On Conformal Welding and Quasicircles

S. ROHDE

1. Introduction

Let C be a quasicircle (i.e., the image of a circle under a quasiconformal mapping) and let G_0 , G_∞ be the bounded and unbounded components of $\widehat{\mathbf{C}} \setminus C$. Throughout this paper we will assume that $0 \in G_0$. By ω_0 , ω_∞ we denote the harmonic measures on C, evaluated at $0, \infty$. We consider the conformal mappings $f: \mathbf{D} \to G_0$, f(0) = 0 and $g: \mathbf{D} \to G_\infty$, $g(0) = \infty$, where \mathbf{D} is the unit disc $\{|z| < 1\}$. The welding $\varphi: \mathbf{T} \to \mathbf{T}$ is defined by

(1)
$$\varphi(\zeta) = (g^{-1} \circ f)(\zeta), \quad \zeta \in \mathbf{T},$$

where **T** is the unit circle $\{|z|=1\}$. Since C is a quasicircle, the welding φ is quasisymmetric.

We are interested in quasicircles C that are "far away from being smooth." For $w_1, w_2 \in C$ let $\langle w_1, w_2 \rangle$ denote the smaller subarc of C with endpoints w_1, w_2 . We define

(2)
$$\beta(C) = \inf_{w_1, w_2 \in C} \sup_{w \in \langle w_1, w_2 \rangle} \frac{|w_1 - w| + |w_2 - w|}{|w_1 - w_2|}.$$

Clearly $\beta(C) \ge 1$, and since C is a quasicircle the right-hand side of (2) remains bounded if we replace inf by sup. If C has a tangent at some point $w \in C$, then $\beta(C) = 1$. Of course there are quasicircles C with $\beta(C) > 1$, for example the snowflake. Other examples are given in Section 3.

We will use the abbreviation dim for Hausdorff dimension.

THEOREM. Let C be a quasicircle with $\beta(C) > 1$. Then there is a set $E \subset T$ with

(3)
$$\dim E < 1$$
 and $\dim \varphi(\mathbf{T} \setminus E) < 1$.

Tukia [11] recently constructed quasisymmetric mappings φ satisfying (3). With the theorem we get a new class of examples.

The proof of the theorem relies on the following proposition.

PROPOSITION. For any quasicircle C there are positive constants c, ϵ_0 and a number $\delta \geq 0$, where δ depends only on $\beta(C)$, such that the following

Received January 18, 1990. Revision received August 13, 1990. Michigan Math. J. 38 (1991).