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Introduction and Results

In this paper, we prove some results about the class A~ of analytic func-
tions on the unit disc D={zeC:|z|<1]} that satisfy |f(z)|=C(1—|z])™"
for some C >0 and n e N. This class was studied extensively by Korenblum
in [6], where some results about the moduli of the zeros of the functions in
the space A~ % are given. There ([6, p. 202], see also [8, Thm. 6]), a function
in A~ is constructed whose sequence of zeros (z,), satisfies ¥ ,(1—|z,|) =
+c0; s0, in general, the Blaschke product cannot be defined. We shall prove
that the function f e H(D), defined by f(z) = g;(r) where z =e*"", 7 >0
and g, is the well-known Eisenstein invariant (see [1, p. 12}), belongs to A=
and f also satisfies ¥, (1—|a,|) =+, where (a,), is its sequence of zeros
in D.
It is easy to prove (see [8, p. 224]) that the function

(1) f(z)=3 a,z" belongsto A~*if and only if (a,), €5,
n=0

where s’ is the space of tempered sequences in which (a,), €’ if there exist
C and o >0 such that |a,|< C(n+1)“. So the boundary values of the func-
tions of the space A~ are the distributions on the circle T={z e C: |z|=1]
with vanishing negative Fourier coefficients. Moreover, if f(2)=X,-0 2,2"
and u € D'(T) is its boundary value, then a,, = (u, e ~indy,

In the following theorem, we give an analogous identification for the func-
tions in the space A~ as some Fourier-Laplace type transforms of the tem-
pered distributions with support contained in [0, +c0).

THEOREM 1. A function [ belongs to the space A% if and only if there
exists a tempered distribution u, with supp(uy) C [0, +o0) such that f(z) =
(up(t), e'@HD/2=2y jf 17| < 1. Moreover, if f(z)/(1—z)=3,4a,z" then
a, = uy, L,(t)e /Dy, where the L,(t) are Laguerre polynomials.
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