Crossed Product Criteria and Skew Linear Groups II

B. A. F. WEHRFRITZ

This paper concerns the class $\langle P, L \rangle$ (AF) of groups built from the classes \mathfrak{A} of abelian groups and \mathfrak{F} of finite groups by repeated use of the local and poly operators L and P, transfinitely if necessary. The nature of the paper makes the use of Hall's calculus of group classes (see the opening pages of [3]) more of a necessity than a convenience. Our previous paper [7] with this title concerned the smaller class $\langle P, L \rangle \mathfrak{A}$.

Throughout this paper F denotes a (commutative) field, D a division Falgebra and n a positive integer. For any group G, $\tau(G)$ is the unique maximal locally finite normal subgroup of G, $\eta(G)$ the Hirsch-Plotkin radical of G, $\zeta_1(G)$ the centre and $\zeta_2(G)$ the second centre of G, and $\alpha(G)$ and $\beta(G)$ are defined by

$$\beta(G)/\tau(G) = \eta(G/\tau(G))$$
 and $\alpha(G)/\tau(G) = \zeta_1(\beta(G)/\tau(G))$.

The core of our main result here, of which there are many corollaries, can be summarized as follows.

Let G be a primitive subgroup of GL(n,D) with $G \in \langle P,L \rangle(\mathfrak{AF})$. Then the F-subalgebra F[G] of the full matrix ring $D^{n \times n}$ generated by G is a crossed product over the locally-finite by abelian normal subgroup $\alpha(G)$ of G; that is, F[G] is free as a left and right $F[\alpha(G)]$ -module on any transversal of $\alpha(G)$ to G.

The proofs below depend heavily on the results and proofs of [7]. One diference perhaps we should specifically mention at the outset. Unlike [7], the major results here depend ultimately on the classification of the finite simple groups (in the weak form, that there exist only a finite number of sporadic groups). In this sense [7] and the present paper operate at different levels. When [7] was written I did not believe that comparable results for $\langle P, L \rangle$ (\mathfrak{AF}) existed. In one way this is true: Unlike $\langle P, L \rangle \mathfrak{A}$ -groups, $\langle P, L \rangle (\mathfrak{AF})$ -groups in general do not have a "Zalesskii" subgroup; specifically, our *F*-algebras need not be crossed products over normal FC-groups, canonical or otherwise. However the partial results obtained by working directly with $\alpha(G)$ do hold and are almost as useful.

Received July 19, 1989. Michigan Math. J. 37 (1990).