Space-Preserving Composition Operators

JOSEPH A. CIMA & LOWELL J. HANSEN

1. Introduction

If φ is an analytic function mapping the unit disk Δ into itself, and if f belongs to the Hardy class H^p , then the composition $(f \circ \varphi)$ belongs to H^p also. This was first pointed out by Littlewood [7]. Our object here is to consider when a reverse implication may hold. That is, let $H(\Delta) = H$ be the topological vector space of functions holomorphic on Δ and let V be a subspace of H. We ask the following question: What are the holomorphic functions φ mapping Δ into Δ , such that whenever $f \in H$ and $(f \circ \varphi) \in V$ it follows that $f \in V$? A function φ satisfying this condition will be said to possess property (*) relative to the subspace V.

It is immediately clear that if φ_1 and φ_2 possess property (*) then so does $(\varphi_1 \circ \varphi_2)$. We will show in Example 5 of the next section that φ_1 and $(\varphi_1 \circ \varphi_2)$ may possess property (*) even if φ_2 does not. As a first example, a linear fractional transformation mapping Δ onto Δ clearly possesses property (*) relative to the H^p spaces, BMOA, and the disk algebra. Further, if φ_1 is a linear fractional transformation mapping Δ onto Δ , then $(\varphi_1 \circ \varphi_2)$ possesses property (*) relative to the H^p spaces, BMOA, or the disk algebra if and only if φ_2 does.

Ryff [9] proved the following theorem related to our question: Let f be nonconstant and analytic on Δ . Let φ be analytic on Δ with $\varphi(0) = 0$ and $|\varphi| < 1$. Then $||f||_p = ||f \circ \varphi||_p$ if and only if φ is inner. Later, Nordgren [8] showed that if φ is an inner function, then φ possesses property (*) relative to H^p . And, the composition operator C_{φ} is norm-preserving on H^p ($||f||_p = ||f \circ \varphi||_p$) if and only if $\varphi(0) = 0$.

In this paper we introduce a family of functions φ mapping Δ into Δ for which (*) holds for the H^p spaces, BMOA, and the disk algebra. Our maps can be factored as a finite Blaschke product times a nonconstant outer function, and hence have modulus strictly less than 1 on arcs of $\partial \Delta = T$ of positive measure. In addition to satisfying (*), the composition operators associated with these maps provide examples illustrating results of spectral properties of C_{φ} as studied by Cowen [2; 3].

Received April 10, 1989. Michigan Math. J. 37 (1990).