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1. Background

Let k& be a field of characteristic O, let 4 be an associative k-algebra, and let
M be an A-bimodule. Define C,,(A4; M) to be M ®A®" (all tensor products
over k) and define b,,: C,,(A; M) —> C, _(A; M) by

by(m®a,®---®a,) =ma;®a;®---Qa, +(—1)'a,mR®a;® --- ®a,_,
n—1 .
+ 2 (ED)'m®a® - ®a;a;,1® - ®ay.
i=1
It is easy to check that b,°b, . ; =0, so that im b, ., is contained in ker b,,.

The Hochschild homology of A with coefficients in M is defined by

ker b,,

H,(A; = - .
(A M) = g

The symmetric group §,, acts on C, (A4; M) by
0-(MPa1® -+ ®a,) =m@a,-1;Q -+ Qa;-1,.

Define a splitting sequence (f,), - to be a sequence of elements f, € k[S,]
such that

.1) by foa=fn_1byc

for all @ € C,(A4; M), all associative k-algebras 4, and all A-bimodules M.
Given a splitting sequence (f,,) one can define 7, (A; M) and K,,(A; M) to be
the image and kernel of C,(A; M) under f,,. Then both (Z,(A4; M), b,) and
(K« (A4; M), b,) are subcomplexes of (C.(A; M), b,) which then yield new
homology theories.

One can obtain a trivial splitting sequence by letting f,, be the identity in
S,,. In general this is the only splitting sequence. However, under the assump-
tion that A4 is commutative and that M is a symmetric bimodule (a-m=m-a
for all a e A and m € M), there do exist nontrivial splitting sequences.
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