Variations of Pseudoconvex Domains over C^n

HIROSHI YAMAGUCHI

Various function-theoretic quantities can be associated to a domain D over the complex plane C. In [13]-[16] we studied how these quantities vary when D varies over C. An important quantity among them was the *Robin constant* which is defined as follows: Let D be an unramified covering domain over C whose boundary, ∂D , consists of smooth curves. For a fixed point ζ in D, the domain D carries the Green function g(z) for Laplace's equation $\Delta g = 4\partial^2 g/\partial z \partial \overline{z} = 0$ with pole at ζ . The function g(z) is uniquely determined by the following three conditions: $\Delta g = 0$ in D except at ζ , g is continuous up to ∂D and g = 0 on ∂D , and g differs from $\log(1/|z-\zeta|)$ by a harmonic function in a neighborhood of ζ . We put

$$\lambda = \lim_{z \to \zeta} \left(g(z) - \log \frac{1}{|z - \zeta|} \right).$$

Following Faber [3], we call λ the Robin constant for (D, ζ) . Now we vary the domain D over C for t in the disk $B: |t| < \rho$; that is, we have a variation $t \to D(t)$ $(t \in B)$ with the following properties: D(0) = D, each D(t) $(t \in B)$ is an unramified covering domain over C bounded by the smooth curves forming $\partial D(t)$, and each D(t) contains the point ζ . We then have the Robin constant $\lambda(t)$ for $(D(t), \zeta)$. $\lambda(t)$ defines a real-valued function on B. In [15] we obtained the following.

THEOREM I. If the set $\mathbf{D} = \{(t, z) | t \in B \text{ and } z \in D(t)\}$ is a pseudoconvex domain over the product space $B \times C$, then $\lambda(t)$ is a superharmonic function on B.

The definition of a pseudoconvex domain over $B \times C$ is given in Oka [8, p. 101]. This theorem was motivated by Nishino's beautiful work on value distribution of entire functions of two complex variables (see his survey [7]). Theorem I has been recently applied to the theory of functions by Suzuki [10] and Fujita [4] and also to other areas by Wermer [12], Kaneko [6], and Suzuki [11].

In this paper we study the case when D(t) varies over the complex n-dimensional Euclidean space C^n , where $n \ge 2$. Let D be an unramified covering domain D over C^n bounded by smooth surfaces ∂D . Fix $\zeta \in D$. Then

Received October 19, 1988. Michigan Math. J. 36 (1989).