The Existence of 7-fields and 8-fields on (8k+5)-dimensional Manifolds

TZE BENG NG

1. Introduction

Let M be a closed, connected and smooth manifold whose dimension n is congruent to 5 mod 8 with $n \ge 21$. Let η be a spin n-plane bundle over M. We shall investigate the span of η . Recall that the Kervaire mod 2 semi-characteristic of M, $\chi_2(M)$, is defined by

$$\chi_2(M) = \sum_{2i < n} \dim_{\mathbb{Z}_2} H^i(M; \mathbb{Z}_2) \mod 2.$$

When η is the tangent bundle of M and M is 3-connected mod 2, we have from [12] that span $(\eta) \ge 6$ if and only if $w_{n-5}(M) = 0$ and $\chi_2(M) = 0$, where $w_i(M)$ is the ith mod 2 Stiefel-Whitney class of M.

We shall prove the following theorems.

THEOREM 1.1. If M is 5-connected mod 2, then $\operatorname{span}(M) \ge 7$ if and only if $\delta w_{n-7}(M) = 0$ and $\chi_2(M) = 0$, where δ is the Bockstein operator associated with the exact sequence $0 \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}_2 \to 0$.

THEOREM 1.2. Suppose M is 5-connected mod 2 and $Sq^1H^{n-7}(M; \mathbb{Z}_2) = 0$. Then $\operatorname{span}(M) \ge 8$ if and only if $w_{n-7}(M) = 0$, $0 \in \psi_3(w_{n-9}(M))$, and $\chi_2(M) = 0$, where ψ_3 is a stable secondary cohomology operation associated with the relation

$$\psi_3: Sq^2Sq^2 + Sq^1(Sq^2Sq^1) = 0.$$

Some applications to immersions of manifolds into Euclidean spaces are given in the last section. Throughout the paper we assume that dim M = n is congruent to 5 mod 8 with $n \ge 21$. All cohomology will be ordinary cohomology with mod 2 coefficients unless otherwise specified.

2. The Modified Postnikov Tower

We shall consider the problem of finding an s-field as a lifting problem. Let $B\hat{S}O_j(8)$ be the classifying space of orientable j-plane bundles ξ satisfying $w_2(\xi) = w_4(\xi) = 0$, where $w_i(\xi)$ is the ith mod 2 Stiefel-Whitney class of

Received September 14, 1987. Revision received September 23, 1988. Michigan Math. J. 36 (1989).