## Regularity of Certain Rigid Isometric Immersions of n-dimensional Riemannian Manifolds into $\mathbf{R}^{n+1}$

## **CHONG-KYU HAN**

## 1. Introduction and Statement of Results

Let M be a real analytic  $(C^{\omega})$  Riemannian manifold and let F be an isometry of differentiability class  $C^1$  of M onto another  $C^{\omega}$  Riemannian manifold  $\tilde{M}$ . Then F is  $C^{\omega}$  and uniquely determined by F(P) and dF(P) at a point  $P \in M$ . The reason is that F is locally a linear mapping between the normal coordinates of M near P and the normal coordinates of  $\tilde{M}$  near F(P). This uniqueness and analyticity of the isometries do not hold for the isometric immersions, as the following example shows.

EXAMPLE 1.1. Let  $\gamma(s) = (\gamma^1(s), \gamma^2(s))$  be a plane curve parameterized by arclength s. If  $\gamma$  is  $C^{\infty}$  but not  $C^{\omega}$  then the mapping  $(s, t) \mapsto (\gamma^1(s), \gamma^2(s), t)$  is a  $C^{\infty}$  isometric immersion of  $\mathbb{R}^2$  into  $\mathbb{R}^3$ , which is not  $C^{\omega}$ . Furthermore, there is not uniqueness either; namely, an isometric immersion F of  $\mathbb{R}^2$  into  $\mathbb{R}^3$  cannot be determined by F(P) and dF(P) at a point  $P \in \mathbb{R}^2$ .

The author's question is whether an isometric immersion F is analytic if F is locally rigid. An isometric immersion  $F: M \to \mathbb{R}^N$  is said to be locally rigid at  $P \in M$  if, for any open neighborhood U of P, there exists an open set V such that  $P \in V \subset U$  having the following property: If F' is any isometric immersion of V into  $\mathbb{R}^N$  then there exists an isometry of  $\mathbb{R}^N$  such that  $F' = \tau \circ F$ . Then the question is the following: Let M be a  $C^{\omega}$  Riemannian manifold and let  $F: M \to \mathbb{R}^N$  be an isometric immersion of class  $C^k$ ,  $k \gg 0$ . Let  $P \in M$ . Then will F be  $C^{\omega}$  at P if F is rigid at P? This paper is a partial answer to this question. Our main result is the following.

THEOREM 1.1. Suppose that M is a  $C^{\omega}$  Riemannian manifold of dimension  $n \geq 3$  and  $F: M \to \mathbb{R}^{n+1}$  is an isometric immersion of class  $C^2$ . Suppose that the immersed submanifold F(M) has at least three nonzero principal curvatures at F(P). Then F is  $C^{\omega}$  at P.

Note that the existence of three nonzero principal curvatures (the definition is recalled in Section 2) is a sufficient condition for F(M) to be locally rigid,

Received July 19, 1988. Revision received December 2, 1988. Michigan Math. J. 36 (1989).