Regularity of Certain Rigid Isometric Immersions of n-dimensional Riemannian Manifolds into \mathbf{R}^{n+1} ## **CHONG-KYU HAN** ## 1. Introduction and Statement of Results Let M be a real analytic (C^{ω}) Riemannian manifold and let F be an isometry of differentiability class C^1 of M onto another C^{ω} Riemannian manifold \tilde{M} . Then F is C^{ω} and uniquely determined by F(P) and dF(P) at a point $P \in M$. The reason is that F is locally a linear mapping between the normal coordinates of M near P and the normal coordinates of \tilde{M} near F(P). This uniqueness and analyticity of the isometries do not hold for the isometric immersions, as the following example shows. EXAMPLE 1.1. Let $\gamma(s) = (\gamma^1(s), \gamma^2(s))$ be a plane curve parameterized by arclength s. If γ is C^{∞} but not C^{ω} then the mapping $(s, t) \mapsto (\gamma^1(s), \gamma^2(s), t)$ is a C^{∞} isometric immersion of \mathbb{R}^2 into \mathbb{R}^3 , which is not C^{ω} . Furthermore, there is not uniqueness either; namely, an isometric immersion F of \mathbb{R}^2 into \mathbb{R}^3 cannot be determined by F(P) and dF(P) at a point $P \in \mathbb{R}^2$. The author's question is whether an isometric immersion F is analytic if F is locally rigid. An isometric immersion $F: M \to \mathbb{R}^N$ is said to be locally rigid at $P \in M$ if, for any open neighborhood U of P, there exists an open set V such that $P \in V \subset U$ having the following property: If F' is any isometric immersion of V into \mathbb{R}^N then there exists an isometry of \mathbb{R}^N such that $F' = \tau \circ F$. Then the question is the following: Let M be a C^{ω} Riemannian manifold and let $F: M \to \mathbb{R}^N$ be an isometric immersion of class C^k , $k \gg 0$. Let $P \in M$. Then will F be C^{ω} at P if F is rigid at P? This paper is a partial answer to this question. Our main result is the following. THEOREM 1.1. Suppose that M is a C^{ω} Riemannian manifold of dimension $n \geq 3$ and $F: M \to \mathbb{R}^{n+1}$ is an isometric immersion of class C^2 . Suppose that the immersed submanifold F(M) has at least three nonzero principal curvatures at F(P). Then F is C^{ω} at P. Note that the existence of three nonzero principal curvatures (the definition is recalled in Section 2) is a sufficient condition for F(M) to be locally rigid, Received July 19, 1988. Revision received December 2, 1988. Michigan Math. J. 36 (1989).