FRÉCHET ENVELOPES OF CERTAIN ALGEBRAS OF ANALYTIC FUNCTIONS ## C. M. Eoff 1. Introduction. Let D denote the open unit disc in the complex plane. The Smirnov class (or Hardy algebra) N^+ consists of those analytic functions on D for which $$\lim_{r \to 1^{-}} \frac{1}{2\pi} \int_{-\pi}^{\pi} \log^{+} |f(re^{i\theta})| d\theta = \frac{1}{2\pi} \int_{-\pi}^{\pi} \log^{+} |f(e^{i\theta})| d\theta < +\infty,$$ where $f(e^{i\theta})$ are the boundary values of f on ∂D [2]. Although N^+ has appeared in the classical literature since 1932 (see [2, p. 31]), it was not until the early 1970s that a study of the linear topological properties was carried out by Yanagihara ([12], [13]). He showed in [13] that N^+ is an F-space (complete, metrizable linear topological space), in fact an F-algebra (multiplication is jointly continuous) with the translation-invariant metric d defined by $$d(f,g) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \log(1 + |f(e^{i\theta}) - g(e^{i\theta})|) d\theta.$$ Like the Hardy spaces H^p , for $0 , Yanagihara showed that <math>N^+$ is not locally convex but still has a rich dual space. However, in contrast to H^p , he showed that N^+ is not locally bounded (i.e., has no bounded neighborhood of zero). The Fréchet envelope for N^+ was identified by Yanagihara [12] as F^+ , those analytic functions on D for which $$\lim_{r \to 1-} (1-r) \log^+(\max_{|z|=r} |f(z)|) = 0.$$ He showed that the topology of F^+ can be given by a family of seminorms, $(\|\cdot\|_c)_{c>0}$, defined by $$||f||_c = \sum_{n=0}^{\infty} |a_n| \exp[-cn^{1/2}], \quad c > 0,$$ where (a_n) are the Taylor coefficients of f. Natural generalizations of N^+ have been studied by Stoll in [11]: $(\text{Log}^+H)^{\alpha}$, $\alpha > 1$, the Hardy-Orlicz algebra of analytic functions on D which satisfy $$\sup_{0 < r < 1} \frac{1}{2\pi} \int_{-\pi}^{\pi} [\log^{+}(|f(re^{i\theta})|]^{\alpha} d\theta < +\infty,$$ and $(\text{Log}^+H(D))^{\alpha}$, $\alpha \ge 1$, the Bergman-Orlicz algebra of analytic functions on D for which Received September 16, 1987. Revision received April 27, 1988. This paper constitutes a portion of the author's doctoral dissertation, written under the supervision of Professor Nigel Kalton, University of Missouri-Columbia. Michigan Math. J. 35 (1988).