ON THE AUTOMORPHISM GROUP OF HYPERELLIPTIC KLEIN SURFACES

E. Bujalance, J. A. Bujalance, and E. Martínez

1. In [6] hyperelliptic Klein surfaces (HKS) were characterized by means of non-Euclidean crystallographic groups (NEC groups). An HKS is a Klein surface with non-empty boundary X that admits an automorphism ϕ of order two such that the quotient $X/\langle \phi \rangle$ has algebraic genus zero. Then, the automorphism group of X has order 2N.

Given an HKS X with algebraic genus $p \ge 2$ and k boundary components, and given $|\operatorname{Aut} X| = 2N$ (N odd), we obtain in this paper the possible values for N. Moreover, for each one of these values we prove that there exists an HKS X, with the above conditions, such that $|\operatorname{Aut} X| = 2N$.

In the particular cases p=2 or p=3, the list of the automorphism groups is given in [5] and [7].

2. A Klein surface (see [1]) may be expressed as D/Γ where D is the hyperbolic plane and Γ is a certain NEC group [12]. NEC groups were introduced by Wilkie [15]. Macbeath [10] associated to each NEC group Γ a signature that has the form

$$(g; \pm; [m_1, ..., m_r], \{(n_{11}, ..., n_{1s_1}) \cdots (n_{k1}, ..., n_{ks_k})\}),$$

and determined the algebraic structure of Γ . In this signature the numbers are integers and $g \ge 0$, $m_i \ge 2$, $n_{ij} \ge 2$. The number g is the topological genus of the group (and that of D/Γ). The sign determines the orientability of D/Γ . The numbers m_i are the *proper periods* and the brackets $(n_{i1}, \ldots, n_{is_i})$ are the *period-cycles*. The number k of period-cycles is equal to the number of boundary components of D/Γ . Numbers n_{ij} are the *periods of the period-cycle* $(n_{i1}, \ldots, n_{is_i})$.

The *canonical* presentation of Γ is as follows.

Generators

(i)
$$x_i$$
 $i = 1, ..., r$

(ii)
$$e_i$$
 $i = 1, ..., k$

(iii)
$$c_{ij}$$
 $i=1,...,k; j=0,...,s_i$

(iv)
$$a_i, b_i \ i = 1, ..., g$$
 (if sign '+')
 $d_i \ i = 1, ..., g$ (if sign '-')

Relations

(i)
$$x_i^{m_i} = 1$$
 $i = 1, ..., r$
(ii) $c_{i,j-1}^2 = c_{i,j}^2 = (c_{i,j-1}c_{i,j})^{n_{ij}} = 1$ $i = 1, ..., k$
 $j = 1, ..., s_i$

Received July 7, 1987. Revision received July 26, 1988.

The authors are partially supported by CAICYT.

Michigan Math. J. 35 (1988).