STRONG LAWS OF LARGE NUMBERS FOR WEAKLY CORRELATED RANDOM VARIABLES

Russell Lyons

Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of complex-valued random variables on a probability space (Ω, P) such that

(1)
$$||X_n||^2 = E[|X_n|^2] = \int_{\Omega} |X_n(\omega)|^2 dP(\omega) \le 1.$$

We are interested primarily in second-order conditions assuring the strong law of large numbers

(SLNN)
$$\lim_{N \to \infty} \frac{1}{N} \sum_{n \le N} X_n = 0 \text{ a.s.}$$

The simplest case concerns uniformly bounded random variables.

THEOREM 1. Let $|X_n| \le 1$ a.s. and suppose that

(2)
$$\sum_{N\geq 1} \frac{1}{N} \left\| \frac{1}{N} \sum_{n\leq N} X_n \right\|^2 < \infty.$$

Then the SLLN holds.

This theorem is essentially known, various special cases having been used in [2], [1], [10, p. 31], [9, §§III.4, IV.4]. While [8] presents almost as general a theorem, apparently Theorem 1 has not appeared explicitly in print. The proof of this and our other theorems consists in showing that the SLLN holds along some subsequence $\{N_k\}$ and then applying a suitable maximal inequality to interpolate between the N_k . When the random variables are uniformly bounded, the maximal inequality is trivial. The heart of Theorem 1, then, is the following refinement of the principle of Cauchy condensation.

LEMMA 2 [2]. Let $\{a_n\}_{n=1}^{\infty}$ be real numbers such that

(3)
$$a_n \ge 0, \qquad \sum_{n \ge 1} \frac{a_n}{n} < \infty.$$

Then there exists an increasing sequence of integers $\{n_k\}$ such that $\sum_{k\geq 1} a_{n_k} < \infty$ and $n_{k+1}/n_k \to 1$.

We shall constantly use the following easy and well-known lemma.

LEMMA 3. If Y_n are random variables such that $\sum_{n\geq 1} ||Y_n||^2 < \infty$, then $Y_n \to 0$ a.s.

Received June 30, 1987. Revision received February 8, 1988.

The author was partially supported by an AMS Research Fellowship.

Michigan Math. J. 35 (1988).