SOLVABILITY OF INVARIANT SECOND-ORDER DIFFERENTIAL OPERATORS ON METABELIAN GROUPS

Ronald L. Lipsman

Introduction. This paper is the third in a series (see [3], [4]) devoted to the idea of applying group representations in order to obtain solvability properties of differential operators on groups and homogeneous spaces. A typical theorem in the subject asserts that if L is a left-invariant differential operator on a connected Lie group G and if its infinitesimal components $\pi(L)$, $\pi \in \hat{G}$, have bounded inverses with suitable norm-growth properties, then L is semiglobally solvable. Theorems 2.1 and 2.4 of [3] are of this variety. In [4] these theorems are improved by allowing for Sobolev-type norms on the representation spaces. The main theorem of [4] is then applied to prove new solvability results for differential operators on the affine motion group of the line (i.e., the ax + b group). In this paper we broaden the applications of [4] considerably.

Until [3], virtually all group representations-related work on solvability concentrated on *nilpotent* groups and transversally elliptic operators. The framework for much of my work in solvability has been *solvable* groups G = SN which are semidirect products of a normal simply connected nilpotent subgroup N and a vector group S. Within this framework I have considered parabolic and hyperbolic operators in addition to transversally elliptic operators. For example, a typical operator of interest is the variable-coefficient heat operator $\Im C = \sum_i A_i - \sum_j X_j^2$, where $\{A_i\}$ is a basis of the Lie algebra \mathfrak{F} of S, and $\{X_j\}$ is a basis of \mathfrak{n} . If we set $A = \sum_i A_i$ and consider its span, we see it is really no loss of generality to assume that dim S = 1. In this paper we study parabolic and hyperbolic second-order operators on G = SN where N is abelian and dim S = 1. (The ax + b group is the simplest noncommutative example of such a group.) So let $A \in \mathfrak{F}$, $A \neq 0$, and let $\{X_j\}_{j=1}^r$ be a basis of \mathfrak{n} . Denote the Laplacian on \mathfrak{n} (with respect to this basis) by $\Delta = \sum_{j=1}^r X_j^2$. We shall consider the following three "classical" second-order operators:

- (i) Heat Operator $3C = A \Delta$,
- (ii) Schroedinger Operator $S = iA \Delta$,
- (iii) Wave Operator $W = A^2 \Delta$.

We saw in [3] and [4] that the eigenvalues of the matrix $\Lambda = Ad_n A$ play a critical role in solvability results on metabelian solvable groups. They continue to play a feature role here; in fact, our main result is the following.

THEOREM. Suppose that all the eigenvalues of Λ have positive real part. Then each of the operators 3C, S, W is globally solvable.

Received May 14, 1987.

The author was supported by NSF under DMS84-00900-A02.

Michigan Math. J. 35 (1988).