OPERATORS WITH COMMUTATIVE COMMUTANTS

M. Radjabalipour and H. Radjavi

It is a well-known consequence of the Putnam-Fuglede theorem that if a normal operator N is a quasiaffine transform of a normal operator M, then M and N are unitarily equivalent. Problem 199 of [4] shows that the result does not remain true if M and N are merely subnormal, even if they are quasisimilar. In the present paper we show that if M (resp. N) is the direct sum of k (resp. m) copies of an operator A having a commutative commutant, where m and k are countable cardinalities, and if N is a quasiaffine transform of M, then k = m (see Theorem 1). In the special case where A is the simple unilateral shift, this extends a result of Hoover [5], who shows that quasisimilar isometries are unitarily equivalent. In fact, using a result of Fan [3], we show that if an isometry N is a quasiaffine transform of an isometry M, and if the unitary part of the Wold decomposition of N has a singular scalar-valued spectral measure, then M and N are unitarily equivalent (see Theorem 2).

We conclude the paper with a result about multiplications M_z by $g(z) \equiv z$ on function spaces $R^2(X, \mu)$, where μ is a positive measure supported on a compact subset X of C; every nonscalar operator commuting with $(M_z)^{(n)}$ has a hyperinvariant subspace if $(M_z)^*$ has an eigenvalue and $n < \infty$ (see Theorem 3). This generalizes a result of Sz.-Nagy and Foias [8, p. 191] and Nordgren [6] about the unilateral shift (see also [7, p. 149]).

Let us here fix some notations and definitions. For the commutant of an operator A we use the usual notation $\{A\}'$. If A is an operator on a Hilbert space \mathcal{K} , then $A^{(k)}$ denotes the direct sum of k copies of A acting on the direct sum $\mathfrak{K}^{(k)}$ of k copies of 3C, where k is any cardinality; if k = 0 then $\mathfrak{K}^{(0)} = \{0\}$. A bounded linear transformation between two Banach spaces is called a quasiaffinity if it is injective and has dense range; an operator N is a quasiaffine transform of an operator M if CM = NC for some quasiaffinity C. The operators M and N are quasisimilar if $C_1M = NC_1$ and $MC_2 = C_2N$ for some quasiaffinities C_1 and C_2 .

For a compact subset X of \mathbb{C} , Rat(X) denotes the algebra of all rational functions with poles off X. If μ is a positive Borel measure supported on X, then $R^2(X, \mu)$ denotes the closure of Rat(X) in $\mathcal{L}^2(\mu)$.

An operator A on \mathcal{K} , with spectrum contained in X, is called Rat(X)-cyclic if there exists a vector e in \mathfrak{R} such that the linear manifold $\{r(A)e: r \in \text{Rat } X\}$ is dense in 3C.

THEOREM 1. Let $A \in B(\mathcal{K})$ and assume $\{A\}'$ is commutative. Let C be a bounded linear transformation such that $CA^{(k)} = A^{(m)}C$ for some finite or countable cardinalities k and m. Then

- (a) $k \le m$ if C is injective, and
- (b) $k \ge m$ if C has dense range.

Received May 12, 1987. Michigan Math. J. 35 (1988).