GREEN'S THEOREM AND BALAYAGE

J. Michael Wilson

1. Introduction. For Q a cube in \mathbb{R}^d with sides parallel to the coordinate axes, let |Q| denote Q's Lebesgue measure. For $\phi \in L^1_{loc}(\mathbb{R}^d)$, define

$$\phi_Q \equiv \frac{1}{|Q|} \int_Q \phi \, dx.$$

We say that ϕ is in BMO if

$$\|\phi\|_* \equiv \sup_{Q \subset \mathbb{R}^d} \frac{1}{|Q|} \int_Q |\phi - \phi_Q| dx < \infty.$$

For Q as above we set $\hat{Q} = \{(t, y) \in \mathbb{R}^{d+1}_+ : t \in Q, 0 < y < \ell(Q)\}$, where $\ell(Q)$ is the sidelength of Q. We say that μ , a Borel measure on \mathbb{R}^{d+1}_+ , is a Carleson measure if

$$\|\mu\|_C \equiv \sup_{Q \subset \mathbf{R}^d} \frac{|\mu|(\hat{Q})}{|Q|} < \infty.$$

There is an intimate connection between the space BMO and the family of Carleson measures. Roughly speaking, a Carleson measure is a conformally invariant finite measure, while a BMO function is a conformally invariant L^1 function. This connection is made more explicit through the following fact. Let $K \in L^1(\mathbb{R}^d)$ satisfy $\int K = 1$, $|K(x)| \le (1+|x|)^{-d-1}$, $|\nabla K(x)| \le (1+|x|)^{-d-2}$. For y > 0 let $K_y(x) = y^{-d}K(x/y)$. Consider the function

(1)
$$S_{\mu,K} = \int_{\mathbf{R}_{\perp}^{d+1}} K_{y}(x-t) \, d\mu(t,y),$$

where μ is a Borel measure on \mathbb{R}^{d+1}_+ . It is easy to see that if μ is finite then the integral in (1)—called the *sweep* or *balayage* of μ with respect to K—converges absolutely for a.e. $x \in \mathbb{R}^d$, and $||S_{\mu,K}||_1 \le C(d) ||\mu||$.

More is true if μ is a Carleson measure. In that case, $S_{\mu,K} \in BMO$ and

(2)
$$||S_{\mu,K}||_* \leq C(d) ||\mu||_C.$$

The proof of (2) is quite easy. What is more remarkable (and also true) is that (2) has a converse [1; 2; 3].

THEOREM A. Let $K \in L^1(\mathbf{R}^d)$ satisfy $\int K = 1$, $|K(x)| \le (1+|x|)^{-d-1}$. Let $\phi \in BMO$ have compact support. There exist $g \in L^{\infty}(\mathbf{R}^d)$ and a finite Carleson measure μ such that $\phi(x) = g(x) + S_{\mu,K}(x)$, where $\|g\|_{\infty} + \|\mu\|_C \le C(d) \|\phi\|_*$.

The proofs in [1; 2; 3] work by an iteration argument. One builds a \tilde{g} and a $\tilde{\mu}$ for which $\tilde{\phi} \equiv \tilde{g} + S_{\tilde{\mu},K}$ is close to ϕ in BMO, and then one repeats the argument on $\phi - \tilde{\phi}$. One does this infinitely often, obtaining g and μ in the limit. The effect

Received January 26, 1987.

Michigan Math. J. 35 (1988).