AN EMBEDDING THEOREM FOR THE FELL TOPOLOGY

Gerald Beer

1. Introduction. Let 2^X (resp. CL(X)) denote the closed (resp. closed and non-empty) subsets of a metric space $\langle X, d \rangle$. The fundamental topology on CL(X) is the *Hausdorff metric topology*, induced by the infinite-valued metric on CL(X) defined by

$$h_d(E, F) = \sup\{\{d(x, E) : x \in F\} \cup \{d(x, F) : x \in E\}\}$$
.

If we replace d by the metric $\rho = \min\{d, 1\}$, then h_{ρ} is finite-valued and determines the same topology on CL(X). Most importantly [8], the map $E \to \rho(\cdot, E)$ is an isometry of $\langle CL(X), h_{\rho} \rangle$ into the bounded continuous real functions on X, equipped with the usual uniform metric.

A somewhat weaker topology on 2^X , which agrees with the Hausdorff metric topology on CL(X) if and only if X is compact, is the *Fell topology* [10], also called the *topology of closed convergence* [12]. To describe this topology, we introduce the following notation: if $A \subset X$, then

$$A^- = \{ E \in 2^X : E \cap A \neq \emptyset \}$$
 and $A^+ = \{ E \in 2^X : E \subset A \}.$

The Fell topology τ_F has as a subbase all sets of the form V^- , where V is an open subset of X and $(K^C)^+$, where K is a compact subset of X. Obviously, the Fell topology is similar in spirit to the stronger *Vietoris topology* ([12], [14]). With respect to convergence notions, it is known (cf. [3, Lemma 1.0] or [11, p. 353]) that a sequence $\langle E_n \rangle$ in 2^X converges in the Fell topology to a closed set E if and only if

$$E = \operatorname{Li} E_n = \operatorname{Ls} E_n$$
,

where Li E_n (resp. Ls E_n) consists of all points x each neighborhood of which meets $\langle E_n \rangle$ eventually (resp. frequently). In the literature, this form of convergence is usually called *Kuratowski convergence*, but sometimes it goes by the name *topological convergence* [15]. In an arbitrary Hausdorff space (not necessarily metrizable), Kuratowski convergence is stronger than convergence with respect to the Fell topology; also, Kuratowski convergence of *nets* of sets determines the Fell topology if and only if X is locally compact (cf. [7] or [12]). The Fell topology and Kuratowski convergence of sets have been particularly important in the study of the convergence of lower semicontinuous functions and their minima ([1], [4], [5], [16]), but these notions also arise in probability theory ([13], [19]), mathematical economics [12], and the study of C^* -algebras [9].

In this note we show that a locally compact metrizable space X admits a metric d for which $E \to d(\cdot, E)$ is a topological embedding of $\langle CL(X), \tau_F \rangle$ into the continuous real functions on X with the compact-open topology (the topology of uniform convergence on compacta), τ_{CO} , that can be extended to 2^X .

Received October 3, 1986. Revision received September 28, 1987. Michigan Math. J. 35 (1988).