ON UNIFORM APPROXIMATION BY HARMONIC FUNCTIONS

Dmitry Khavinson

1. Introduction. Let X be a compact set in \mathbb{R}^2 and let R(X) denote the uniform closure on X of functions analytic in a neighborhood of X. The following concept of analytic content defined by

(1)
$$\lambda(X) \stackrel{\text{def}}{=} \inf_{\phi \in R(X)} \|\bar{z} - \phi(z)\|_{\infty}$$

has been introduced in [7] and studied in [5], [7], [9], and [10] ($\|\cdot\|_{\infty}$ stands for the supremum norm in the space of continuous functions C(X) on X). As easily follows from the Stone-Weierstrass theorem, $\lambda(X) = 0$ if and only if R(X) = C(X). This simple observation allows us to view $\lambda(X)$ as a certain measure of solvability of the problem of uniform approximation by analytic functions on X. As it turns out ([1] and [7]; see also [5], [9], and [10]), $\lambda(X)$ admits simple estimates in terms of basic geometric quantities of X such as area and perimeter. More precisely,

(2)
$$\left(\frac{A}{\pi}\right)^{1/2} \ge \lambda(X) \ge \frac{2A}{P},$$

where A = area of X, P = perimeter of X (if X has a finite perimeter; otherwise, $P = \infty$); see [3, Ch. IV] and [8]. We mention that the inequality in the left-hand side of (2) was observed by Alexander [1] and the second inequality is due to the author [7]. We refer the reader to [5], [9], and [10] for a detailed discussion of these inequalities and related isoperimetric problems.

The purpose of this note is to develop a similar concept for H(X), the uniform closure of the space of functions harmonic in a neighborhood of a compact set $X \subset \mathbb{R}^n$, $n \ge 2$. By similarity with (1) we define the harmonic content $\Lambda(X)$ of a compact set $X \subset \mathbb{R}^n$ to be

(3)
$$\Lambda(X) \stackrel{\text{def}}{=} \inf_{u \in H(X)} ||x|^2 - u||_{\infty},$$

where $|x|^2 = \sum_{i=1}^n x_i^2$, $x = (x_1, ..., x_n) \in \mathbb{R}^n$. The analogy with (1) can be seen if one observes the correspondence between H(X) = uniform closure of the kernel of Δ on X and R(X) = uniform closure of the kernel of $\partial/\partial \overline{z}$, $|x|^2 : \Delta(|x|^2) \equiv 2n \equiv \text{const} \neq 0$ in \mathbb{R}^n and $\overline{z} : (\partial/\partial \overline{z})(\overline{z}) \equiv 1 \neq 0$ in \mathbb{R}^2 . (We use the standard notation: Δ denotes the Laplacian $\sum_{i=1}^n (\partial^2/\partial x_i^2)$ and $\partial/\partial \overline{z} = \frac{1}{2}(\partial/\partial x + i \partial/\partial y)$, z = x + iy.) However, in this case the equivalence

(4)
$$\Lambda(X) = 0 \Leftrightarrow H(X) = C(X)$$

Received April 28, 1987.

This work was partially supported by the National Science Foundation under grant DMS-8400582.

Michigan Math. J. 34 (1987).