THE RANGE INCLUSION PROBLEM FOR ELEMENTARY OPERATORS

Lawrence A. Fialkow

Dedicated to the memory of Constantin Apostol

1. Introduction. Let $\mathcal{L}(\mathcal{K})$ denote the algebra of all bounded linear operators on a separable infinite-dimensional complex Hilbert space \mathcal{K} . Let $A = (A_1, ..., A_n)$ and $B = (B_1, ..., B_n)$ denote *n*-tuples of operators and let $R = R_{AB}$ denote the *elementary operator* on $\mathcal{L}(\mathcal{K})$ defined by

$$R(X) = \sum_{i=1}^{n} A_i X B_i.$$

Let \mathcal{J} denote a 2-sided ideal of $\mathcal{L}(\mathcal{IC})$ ($\mathcal{J} \neq \mathcal{L}(\mathcal{IC})$). The purpose of this note is to draw attention to the range inclusion problem for elementary operators, which asks for a characterization of the structure of an elementary operator R_{AB} whose range is contained in \mathcal{J} ,

$$(1.1) Ran $R_{AB} \subset \mathfrak{J}.$$$

(We note that if $\mathcal{J} \neq \{0\}$, then it is impossible to achieve the identity Ran $R_{AB} = \mathcal{J}$; this is because each nonzero ideal contains \mathcal{F} , the ideal of finite rank operators, and if $\mathcal{F} \subset \operatorname{Ran} R_{AB}$, then $\operatorname{Ran} R_{AB} = \mathcal{L}(\mathcal{IC})$ [2, Thm. 2.3].)

It is easy to illustrate sufficient conditions for the range inclusion (1.1). If for each i, $A_i \in \mathcal{J}$ or $B_i \in \mathcal{J}$, then clearly (1.1) holds. This condition is not, however, necessary for range inclusion, as shown by the following.

EXAMPLE 1.1. For $1 \le p \le \infty$, let \mathcal{C}_p denote the Schatten p-ideal [5, p. 91]. Suppose $1 < p, q < \infty$ with 1/p + 1/q = 1, and let $A \in \mathcal{C}_p \setminus \mathcal{C}_1$ and $B \in \mathcal{C}_q \setminus \mathcal{C}_1$; then for every $X \in \mathcal{L}(\mathcal{C})$, $AXB \in \mathcal{C}_1$ [5, p. 92].

For $T \in \mathcal{L}(\mathcal{C})$, let s(T) denote the sequence of s-numbers of T [5, p. 59]; in the case when T is compact, the s-numbers are the eigenvalues of $(T^*T)^{1/2}$ arranged in decreasing order and repeated according to multiplicity. For an ideal \mathcal{G} , let J denote the *ideal set* of \mathcal{G} (see, e.g., [3; 6; 7; 8]); thus $T \in \mathcal{G}$ if and only if $s(T) \in J$ [3; 8]. For example, if $\mathcal{G} = \mathbb{C}_p$, then $J = l_p$ ($1 \le p \le \infty$). The range inclusion (1.1) for n = 1 has been characterized by Loebl and the author [3] as follows.

THEOREM 1.2 [3, Thm. 5.6]. Let $A, B \in \mathcal{L}(\mathfrak{IC})$ and let \mathfrak{J} be an ideal of $\mathcal{L}(\mathfrak{IC})$. The elementary multiplication operator $S = S_{AB}$, defined by S(X) = AXB ($X \in \mathcal{L}(\mathfrak{IC})$), satisfies Ran $S \subset \mathfrak{J}$ if and only if the product sequence s(A)s(B) belongs to J.

(Note that Example 1.1 follows from Theorem 1.2 and the fact that $l_p \cdot l_q \subset l_1$.)

Received November 11, 1986. Revision received February 6, 1987.

Research partially supported by an NSF research grant.

Michigan Math. J. 34 (1987).