THE SPECTRUM OF THE LAPLACIAN ON RIEMANNIAN HEISENBERG MANIFOLDS

Carolyn S. Gordon and Edward N. Wilson

1. Introduction. For any compact Riemannian manifold (M, g) let $\operatorname{spec}(M, g)$ denote the collection of eigenvalues, with multiplicities, of the associated Laplace-Beltrami operator acting on $C^{\infty}(M)$. Two manifolds (M, g) and (M', g') are said to be isospectral if $\operatorname{spec}(M, g) = \operatorname{spec}(M', g')$. Many examples exist of pairs of isospectral, non-isometric Riemannian manifolds ([3], [6], [10], [12], [15], [17], [18]). Vigneras gave the first examples of isospectral manifolds with non-isomorphic fundamental groups. In contrast, some manifolds such as the canonical sphere S^n and real projective space P^n , $n \le 6$, are uniquely determined up to isometry by $\operatorname{spec}(M, g)$. (See e.g. [1], [9].)

In this paper we study the spectrum of the Laplacian of compact Riemannian Heisenberg manifolds; that is, manifolds of the form $(\Gamma \setminus H_n, g)$, where H_n is the (2n+1)-dimensional Heisenberg group, Γ is a uniform discrete subgroup, and g is a Riemannian metric on $\Gamma \setminus H_n$ whose lift to H_n is left-invariant. The Heisenberg manifolds are among the few manifolds for which spec(M, g) can be explicitly computed. By comparing the spectra of various Heisenberg manifolds, we find:

- (A) If n = 1, $(\Gamma \setminus H_n, g)$ is uniquely determined by its spectrum.
- (B) If n > 1, there exist many choices of pairs $(\Gamma \setminus H_n, g)$ and $(\Gamma' \setminus H_n, g')$ that are isospectral but not isometric.

More specifically, we associate with every uniform discrete subgroup Γ of H_n a positive integer denoted $|\Gamma|$. Whenever n>1 and $|\Gamma|=|\Gamma'|$, there exist continuous families of metrics g_t and g_t' such that for each t, $(\Gamma \setminus H_n, g_t)$ is isospectral to $(\Gamma' \setminus H_n, g_t')$. (Note that we are *not* asserting the existence of continuous isospectral deformations of a metric.) Since $|\Gamma|$ does not always determine the isomorphism class of Γ , we thus obtain examples of isospectral manifolds with non-isomorphic fundamental groups. In some cases the manifolds are also isospectral on p-forms for all $p \ge 0$.

This paper was partly motivated by the following result of [6]. Let G be a nilpotent Lie group. In [6] we defined a group AIA(G) of "almost inner" automorphisms, and showed that $(\varphi(\Gamma)\backslash G, g)$ is isospectral to $(\Gamma\backslash G, g)$ for all $\varphi \in$ AIA(G) whenever Γ is any uniform discrete subgroup of G and g any metric arising from a left-invariant metric on G. The manifolds are isometric if φ lies in the group Inn(G) \subset AIA(G) of inner automorphisms but are rarely isometric otherwise. We thus obtained continuous families of non-isometric manifolds all isospectral to $(\Gamma\backslash G, g)$ under the condition Inn(G) \neq AIA(G). We do not know whether this condition is necessary as well as sufficient for the existence of a non-

Received October 16, 1984. Revision received September 4, 1985.

The first author was partially supported by the National Science Foundation grant 840–1598.

Michigan Math. J. 33 (1986).