SPECTRAL INVARIANTS OF FOLIATIONS

Connor Lazarov

One of the problems in foliation theory is to relate the transverse geometry of the foliation to its topological invariants, the exotic classes. In this paper we introduce a spectral invariant related to the transverse geometry for an important class of foliations and relate it to exotic characteristic numbers.

A Lie group acting by isometries with constant orbit dimension generates a Riemannian foliation. In this paper we study the case of R^n acting locally freely by isometries, this being an interesting class of foliations; the study of a much larger class of foliations can also be reduced to that of R^n .

Let R'' act by isometries locally freely on a compact oriented (4k-1)-manifold M. Let f be a symmetric homogeneous polynomial of degree k in 2k indeterminates with integral coefficients. For $\theta \neq 0$ in R'' we construct an eta function $\eta_f(s;\theta)$. Eta is constructed from the infinitesimal generator of the R action corresponding to θ and the transverse signature operator (with coefficients) to the orbits of the R action. We relate the value $\eta_f(s;\theta)$ at s=0 to the Simons characteristic number $S_f[M]$ associated to the codimension 4k-n-1 Riemannian foliation arising from the R'' action and f. We assume throughout this paper that our foliations are oriented.

THEOREM 1. For generic θ , $\eta_f(s;\theta)$ converges absolutely for Re(s) large and extends to a meromorphic function on the s plane with a finite value at s = 0. $\eta_f(0;\theta)$ is independent of θ and

$$\eta_f(0;\theta) = (-1)^k 2^{2k+1} S_f[M] \mod Z[\frac{1}{2}].$$

REMARK. Generic is defined in Section 1. Thus $\eta_f(0; \theta)$ is independent of θ for generic θ .

As a corollary to the method of proof we obtain the following.

THEOREM 2. Let R^n act by isometries on the compact, oriented 4k manifold W with boundary M with the action locally free on the boundary. Let η_f be the eta function for the action on M, and let Γ be the fixed set for the action on W. For generic θ ,

$$\eta_f(0;\theta) = (-1)^k 2^{2k+1} \operatorname{Residue}(\theta, f, \Gamma) \mod Z.$$

Here residue is that of [6] and [5].

COROLLARY 2. $\eta_f(0; \theta) = 0 \mod Z[\frac{1}{2}]$ when n > 2 for generic θ .

REMARK. This allows us to regard $\eta_f(0;\theta)$ as an obstruction to extending an isometric locally free R action to an isometric locally free R^n action for n > 2.

Received October 5, 1984. Revision received April 11, 1985.

Research partly supported by N.S.F. grant.

Michigan Math. J. 33 (1986).