CELLULAR-INDECOMPOSABLE OPERATORS AND BEURLING'S THEOREM

Paul. S. Bourdon

- 1. Introduction. Let H be a Hilbert space with norm $\| \|$ consisting of functions analytic on the open unit disk Δ . We will assume that H has the following properties.
 - (1) The polynomials are dense in H.
 - (2) Multiplication by z, T_z , is a bounded linear operator on H.
 - (3) If $zg \in H$ for some function g analytic on Δ , then $g \in H$.
 - (4) For each point $b \in \Delta$, the linear functional of evaluation at b, λ_b , is continuous with respect to the norm of H.

Requiring that H have property (3) is actually equivalent to requiring that T_z be bounded below (see Proposition 2). In this paper we will be concerned primarily with the operator T_z on H.

For $-\infty < \alpha < \infty$, let D_{α} represent the Hilbert space of analytic functions f on Δ satisfying $||f||_{\alpha} < \infty$, where if $f = \sum_{n=0}^{\infty} a_n z^n$, $||f||_{\alpha}^2 = \sum_{n=0}^{\infty} (n+1)^{\alpha} |a_n|^2$. It is not difficult to verify that the spaces D_{α} with norm $||f||_{\alpha}$ satisfy properties (1)-(4) above. Note that D_{-1} , D_0 , and D_1 are the Bergman, Hardy, and Dirichlet spaces respectively. Also note that the operator T_z on D_{α} corresponds to the unilateral weighted shift with weight sequence

$$\left\{ \left(\frac{n+2}{n+1} \right)^{\alpha/2} \right\}_{n=0}^{\infty}$$

relative to the orthonormal basis

$$\left\{ \left(\frac{1}{n+1} \right)^{\alpha/2} z^n \right\}_{n=0}^{\infty} \text{ of } D_{\alpha}$$

(cf. [9]).

We say that a closed subspace $M \subset H$ is invariant if it is invariant under the operator T_z ; that is, a subspace M is invariant if it is closed and $zM \subset M$. For a function $f \in H$, define [f] = H-closure of $\{pf : p \text{ is a polynomial}\}$. We say that an invariant subspace M of H is cyclic provided there is some function $f \in M$ such that M = [f]. We denote by $N_1 \ominus N_2$ the orthogonal complement of N_2 in N_1 for closed subspaces $N_2 \subset N_1 \subset H$; and by $M_1 \vee M_2$, the closed linear span of the subspaces M_1 and M_2 of H. For M_1 and M_2 invariant subspaces of H, observe that $M_1 \cap M_2$ and $M_1 \vee M_2$ are invariant.

Adopting terminology established in [8], we say that the operator T_z on H is cellular-indecomposable if $M_1 \cap M_2 \neq \{0\}$ for any two nonzero invariant subspaces M_1 and M_2 of H. The following proposition applies to T_z on D_0 since each function in the Hardy space is the quotient of H^{∞} functions, and since for ϕ a multiplier of D_{α} and $f \in D_{\alpha}$, $\phi[f] \subset [f]$ (cf. [3, Proposition 7]).

Received September 5, 1984. Revision received August 13, 1985. Michigan Math. J. 33 (1986).