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Let 3C be a complex Hilbert space (of arbitrary dimension), and let £(3C)
denote the algebra of bounded linear operators on 3C. Among the useful topol-
ogies on £(JC) are the weak* topology (sometimes called the ultraweak operator
topology) and the weak operator topology. If OIT is any linear manifold in £(3C),
then 9N inherits these two topologies. A linear functional on 9 that is con-
tinuous in the weak* [resp., weak operator] topology will be called a weak*
[resp., weakly]l continuous functional. If I is closed in the weak operator
topology, we will call O a weakly closed subspace. One knows from the Hahn-
Banach theorem that every weak* [resp., weakly] continuous functional on 9
has the form [¢] =¢ | O where ¢ is a weak* [resp., weakly] continuous func-
tional on £(3C). In this paper we will be concerned mostly with weakly con-
tinuous functionals, and therefore we remind the reader that every such func-
tional on £(JC) is a finite sum of functionals of the form x®y with x, ye 3C,
where '

(x®y)(A)=(Ax,y), AeL(3C).

(Weak* continuous functionals on £(JC) have the form 37_; x,®y,, but this
fact will not be needed herein.)

Let OIU be a linear manifold in £(3C). As in [11], we will use the notation
Ref (L) for the set of all operators X in £(J3C) such that Xy e (9 y)~ for every y
in 3C. The subspace (My)~ will be referred to (somewhat improperly) as the
cyclic space for N generated by y. The following concept of reflexivity was
introduced by Loginov and Sulman in [4].

DEFINITION 1. A linear manifold 9 C £(3C) is said to be reflexive if
Ref (91T) = OIT.

It is easy to verify that Ref(9R) = Alg Lat(9) if 9N is an algebra containing
15, and for such algebras the above definition gives the usual one of reflexive
algebras. Note, however, that 9T = {0} is reflexive as a subspace but not as an
algebra.

In this paper we study the relationship between the reflexivity of a linear mani-
fold 9N in L£(3C) and the structure of the weakly continuous functionals on 9.
The following definition is pertinent to the kind of structure we have in mind.
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