RATIONAL POINTS OF INFINITE ORDER ON ELLIPTIC CURVES

François Ramaroson

Let N be a prime number of the form $N = u^2 + 64$, where $u \in \mathbb{Z}$, and let l be a prime greater than 3, congruent to 3 mod 4 which is a quadratic residue mod N. Denote by K the imaginary quadratic field $Q(\sqrt{-l})$.

According to Setzer [13], there are (up to isomorphism) two elliptic curves defined over Q having a rational point of order two and with conductor N:

$$E: y^2 = x^3 + ux^2 - 16x$$
 and $E': y^2 = x^3 - 2ux^2 + Nx$

where u is chosen, so that $u \equiv 1 \pmod{4}$. E and E' are isogenous over Q. In fact, $E' \approx E/C$, where C is the subgroup of E generated by the rational point of order two.

A global minimal model for E is:

$$y^2 + xy = x^3 + \left(\frac{u-1}{4}\right)x^2 - x.$$

Direct calculations from this model give:

- (1) The minimal discriminant is N;
- (2) The *j*-invariant is $(N-16)^3/N$.

PROPOSITION 0.1.

- (1) $\operatorname{rank}(E(Q)) = \operatorname{rank}(E'(Q)) = 0;$
- (2) $\coprod (E, Q)_2 = \coprod (E', Q)_2 = 0.$

Proof. This proposition follows directly from Mazur [9] (Corollary 9.10, p. 257), as E and E' have prime conductors.

PROPOSITION 0.2. $E(Q) \approx \mathbb{Z}/2\mathbb{Z} \approx E'(Q)$.

Proof. We work it out for *E*.

By Proposition 0.1, E(Q) is a torsion group. Suppose E(Q) has a point M of order $p \neq 2$, with p prime. Since E has good reduction at 2, we have an injection $E(Q_2)_p \hookrightarrow \tilde{E}(\mathbf{F}_2)_p$, where \tilde{E} is the reduced curve mod 2 and \mathbf{F}_2 the residue field with 2 elements.

After we reduce the global minimal model

$$y^2 + xy = x^3 + \left(\frac{u-1}{4}\right)x^2 - x$$

modulo 2, we get:

$$y^2 + xy = x^3 + x^2 - x$$
 if $u \not\equiv 1 \pmod{8}$,
 $v^2 + xy = x^3 - x$ if $u \equiv 1 \pmod{8}$.

Received September 21, 1983. Revision received March 28, 1985. Michigan Math. J. 33 (1986).