HARDY SPACES AND BMO-FUNCTIONS INDUCED BY ERGODIC FLOWS

Jun-Ichi Tanaka

1. Introduction. Let X be a measure space with probability measure m, and let $\{T_t\}_{t\in\mathbb{R}}$ be an ergodic measurable action of the real line \mathbb{R} on X preserving m. The ergodic Hilbert transform on X, $H_X\phi$, of a function ϕ in $L^1(X)$ is defined by the formula:

(1.1)
$$(H_X\phi)(x) = \lim_{\epsilon \to +0} \frac{1}{\pi} \int_{\epsilon < |t| < 1/\epsilon} \phi(T_{-t}x) \frac{dt}{t}$$

for a.e. x in X. The existence of this limit is shown in [2]. Let $H^{\infty}(X)$ be the subalgebra of $L^{\infty}(X)$ consisting of functions of the form $\phi + iH_X\phi$, and let $H_0^{\infty}(X)$ be the subspace of all functions in $H^{\infty}(X)$ with mean value zero. The space $H^p(X)$ (resp. $H_0^p(X)$), $0 , is defined to be the closure of <math>H^{\infty}(X)$ (resp. $H_0^{\infty}(X)$) in $L^p(X)$. The measure m is multiplicative on $H^{\infty}(X)$, and $H^{\infty}(X)$ becomes a weak*-Dirichlet algebra in $L^{\infty}(X)$ (cf. [10], [16], and Proposition 5.1 in Section 5).

Let Y be a measure space with probability measure m_1 , and let T be an ergodic measure preserving transformation on Y. Suppose that F is a bounded measurable function on Y, bounded away from zero, and normalized to have integral one. Throughout this paper, we shall always assume that the ergodic flow $(X, \{T_t\}_{t \in \mathbb{R}}, m)$ is the "special flow under the function F" generated by ergodic dynamical system (Y, T, m_1) . More precisely, we define τ to be the function by the formula

(1.2)
$$\tau(y,n) = \begin{cases} \sum_{j=0}^{n-1} F(T^{j}y) & \text{if } n > 0, \\ 0 & \text{if } n = 0, \\ -\tau(T^{n}y, -j) & \text{if } n < 0, \end{cases}$$

for each integer n and each y in Y. Let X be the region of $Y \times \mathbb{R}$ under the graph of F, that is,

$$X = \{(y, s) : y \in Y \text{ and } 0 \le s < F(y)\},\$$

and let m be the restriction of $dm_1 \times dt$ to X. Then it is easy to see that m is a probability measure on X by the hypotheses of F. By using (1.2), a measure preserving transformation group $\{T_t\}_{t\in\mathbb{R}}$ on X is defined by the formula

(1.3)
$$T_t(y,s) = (T^n y, s + t - \tau(y,n))$$

Received March 23, 1984. Final revision received August 11, 1984.

This research was partially supported by a Grant-in-Aid for Scientific Research (No. 57740097) from the Japanese Ministry of Education.

Michigan Math. J. 32 (1985).