THE REDUCED MINIMUM MODULUS

Constantin Apostol

Introduction. Let T be a bounded linear operator acting in a Banach space. The reduced minimum modulus of T will be defined by the equation

$$\gamma(T) = \begin{cases} \inf\{\|Tx\| : \operatorname{dist}(x, \ker T) = 1\} & \text{if } T \neq 0, \\ 0 & \text{if } T = 0. \end{cases}$$

The definition of $\gamma(T)$ is taken from [9, Ch. IV, §5] for $T \neq 0$. (If T = 0 we put $\gamma(T) = 0$, whereas in [9], $\gamma(T) = \infty$). Thus $\gamma(T) > 0$ if and only if T has closed non-zero range. If T is invertible then $\gamma(T) = ||T^{-1}||^{-1}$ and this shows that the function $T \to \gamma(T)$ is not continuous but it could have good local continuity properties.

In general $\lim_{n\to\infty} \gamma(T^n)^{1/n}$ does not exist and it is not known what conditions on T are equivalent to the existence of $\lim_{n\to\infty} \gamma(T^n)^{1/n}$. We mention the following known cases when $\lim_{n\to\infty} \gamma(T^n)^{1/n}$ exists:

- (1) if T is Fredholm, $\lim_{n\to\infty} \gamma(T^n)^{1/n}$ is the radius of the largest open disk centered at 0, included in the Fredholm domain of T, such that $\dim \ker(T-\lambda) = \text{const.}$ for $\lambda \neq 0$ in the disk ([8]);
- (2) if T is surjective or bounded from below, $\lim_{n\to\infty} \gamma(T^n)^{1/n}$ is the radius of the largest open disk centered at 0 such that $T-\lambda$ is surjective or bounded from below for λ in the disk ([10], [11]).

In this paper we investigate the properties of the reduced minimum modulus of operators acting in Hilbert spaces. In Section 1 we develop some general properties of $\gamma(T)$ and a related matrix representation of T (Theorem 1.5). Section 2 will be devoted to the study of the continuity properties of the function $\lambda \to \gamma(T-\lambda)$, $\lambda \in C$. The discontinuities of this function form a countable set and $\lim_{\lambda \to \mu} \gamma(T-\lambda)$ always exists. The set

$$\sigma_{\gamma}(T) = \left\{ \mu \in C : \lim_{\lambda \to \mu} \gamma(T - \lambda) = 0 \right\}$$

is closed, non-empty, and obeys the spectral mapping theorem (Theorem 2.7). As seen in Theorem 2.5 and Proposition 2.6, $\rho_{\gamma}(T)$, the complement of $\sigma_{\gamma}(T)$, is the minimal open set where $T-\lambda$ has an analytic generalized inverse.

Section 3 deals with the problem of the existence of $\lim_{n\to\infty} \gamma(T^n)^{1/n}$ and the role $\sigma_{\gamma}(T)$ plays in this problem. A positive new result and a direct generalization of the result of [8] is the existence of $\lim_{n\to\infty} \gamma(T^n)^{1/n}$ for semi-Fredholm operators (see Remark after Corollary 3.4).

The last part of the paper, Section 4, contains some results on the effect of a compact perturbation K on $\sigma_{\gamma}(T+K)$ (see Theorem 4.4).

1. Preliminaries. Throughout the paper we shall denote by H a fixed complex Hilbert space, $H \neq \{0\}$, and T will be a fixed bounded linear operator acting in H.

Received November 8, 1983.

Michigan Math. J. 32 (1985).