COMPACT COMPOSITION OPERATORS ON $H^p(B_N)$

Barbara D. MacCluer

Introduction. Let B_N be the open unit ball in \mathbb{C}^N and let $\Phi: B_N \to B_N$ be a holomorphic self-map of B_N . For f a holomorphic function on B_N , denote the composition $f \circ \Phi$ by $C_{\Phi}(f)$. This will again be a holomorphic function on B_N . We are concerned here with the question of when C_{Φ} , called the composition operator induced by Φ , will be a *bounded*, or respectively *compact*, operator on some Hardy space $H^p(B_N)$, for 0 . Several authors ([1], [5]) have recently given examples to show that, in contrast to the case <math>N=1, C_{Φ} may indeed fail to be bounded on $H^p(B_N)$ when N>1 and $p < \infty$. In Section 1 we give a necessary and sufficient condition, in terms of the measure $\sigma(\Phi^*)^{-1}$, for C_{Φ} to be bounded (respectively compact) on $H^p(B_N)$, and derive some consequences of this criterion.

In one variable, compact composition operators on the spaces $H^p(\mathbf{D})$ have been studied by J. Shapiro and P. Taylor in [9], where they examine the relationship between compactness of the operator C_{Φ} and certain geometric conditions on $\Phi(\mathbf{D})$. In particular, they show that any map Φ for which the range of Φ is contained in a region which touches the unit circle sufficiently "infrequently and sharply" will induce a compact composition operator. In Section 2 we study the question of whether there are geometric conditions on $\Phi(B_N)$ (N > 1) which will guarantee that C_{Φ} be compact on $H^p(B_N)$. It is the existence of unbounded composition operators when N > 1 which makes this question much more difficult in several variables than in the case N = 1. Using the compactness criterion developed in Section 1, we show that any Φ with $\Phi(B_N)$ contained in a sufficiently small (depending on the dimension N) Koranyi approach region $D_{\alpha}(\zeta)$ will induce a compact composition operator on every $H^p(B_N)$, $p < \infty$. We give an example to show that this result is sharp in a strong sense; maps into larger Koranyi approach regions may even fail to induce bounded operators.

Finally we give an example of a map $\Phi: B_2 \to B_2$ for which C_{Φ} is compact on $H^p(B_2)$, but is not Hilbert-Schmidt on $H^2(B_2)$. To do this we use techniques developed in this paper to modify examples given in [9] for the case N=1 of composition operators which are compact but not Hilbert-Schmidt on $H^2(\mathbf{D})$.

I would like to thank Professor Daniel Luecking for several helpful conversations regarding some of the material of Section 1, particularly Corollary 1.4 and Lemma 1.6.

1. A characterization of bounded (respectively compact) composition operators. The main goal of this section is a theorem which gives necessary and sufficient conditions for the operator C_{Φ} to be bounded (compact) on $H^{p}(B_{N})$. We

Received July 24, 1984. Revision received September 25, 1984.

Research supported in part by National Science Foundation Grant DMS-8402721. Michigan Math. J. 32 (1985).