ON SUBMANIFOLDS WITH PLANAR NORMAL SECTIONS

Yi Hong

1. Introduction. Let M be a submanifold of dimension n in a Euclidean m-space E^m . For any point p in M and any unit vector t at p tangent to M, the vector t and the normal space N_pM of M at p determine an (m-n+1)-dimensional vector subspace E(p,t) of E^m through p. The intersection of M and E(p,t) gives rise to a curve γ in a neighborhood of p which is called the normal section of M at p in the direction t. The submanifold M is said to have planar normal sections if normal sections of M are planar curves. In this case, for any normal section γ , we have $\gamma' \wedge \gamma'' \wedge \gamma''' = 0$. A submanifold M is said to have pointwise planar normal sections if, for each p in M, every normal section γ at p satisfies $\gamma' \wedge \gamma'' \wedge \gamma''' = 0$ at p. Submanifolds with (pointwise) planar normal sections were investigated in [1, 2, 3, 6]. B. Y. Chen [3] classified surfaces in E^m with planar normal sections, and he proved the following theorem:

THEOREM A. Let M be a surface in E^m with planar normal sections. If, locally, M does not lie in a 3-dimensional hyperplane of E^m , then M is an open subset of a Veronese surface in a 5-dimensional hyperplane of E^m .

In the following, by a Veronese submanifold V^n we mean a real projective n-space isometrically imbedded in $E^{n+n(n+1)/2}$ by its first standard imbedding (cf. [4, pp. 141-148]).

In this paper, we generalize Theorem A to higher dimensions. We shall prove the following theorems.

THEOREM B. Let M be an n-dimensional submanifold in E^m with planar normal sections. If, locally, M does not lie in an (n(n+1)/2)-dimensional affine subspace of E^m , then M is an open portion of a Veronese submanifold V^n in an (n+n(n+1)/2)-subspace of E^m .

THEOREM C. Let M be a 3-dimensional submanifold in E^m with planar normal sections. If, locally, M does not lie in a 5-space E^5 of E^m , then M is an open portion of a Veronese submanifold V^3 in E^9 or is the Riemannian direct product of the real line \mathbf{R} with the Veronese surface.

2. Proof of Theorem B. Let M be a submanifold in E^m , ∇ and $\tilde{\nabla}$ be the covariant derivatives of M and E^m , respectively. For any two vector fields X, Y tangent to M, the second fundamental form h is given by $h(X,Y) = \tilde{\nabla}_X Y - \nabla_X Y$. For any vector field ξ normal to M, we have $\tilde{\nabla}_X \xi = -A_{\xi} X + \nabla_X^{\perp} \xi$, where A_{ξ} is the Weingarten map associated with ξ and ∇^{\perp} is the normal connection of the normal bundle N(M). Define the covariant derivative of h by

(2.1)
$$(Dh)(X, Y, Z) = \nabla_X^{\perp}(h(Y, Z)) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z),$$

Received March 13, 1984. Final revision received July 31, 1984. Michigan Math. J. 32 (1985).