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1. Introduction. Let D be any domain of C that contains the point at infinity.
It is well known that for each c € C \ {0} there is a (univalent) conformal mapping
¢. of D onto the complement of horizontal slits and points, normalized by

o-(z)=cz+o0(1) as z— oo,

Such mappings can be obtained by solving the linear extremal problem
max Re{ch;} over all conformal mappings f of D with expansion

f(z)=cz+~i—'+---

near infinity.
Many authors [1, 2, 4, 5, 6, 7, 8] have generalized this result to univalent,
canonical slit mappings satisfying the partial differential equation

(1) f2=.u'fz+VE in D,

where g and » satisfy the uniform ellipticity condition supp(|u|+|v|) <1 and
where D is finitely connected.

In this article D may have arbitrary connectivity, and we are interested in the
equation (1) with x=0. We shall assume that v is an anti-analytic function and
|v| <1in D, but we shall permit |»| to approach one at the boundary. We shall
obtain horizontal slit mappings which are locally quasiconformal, harmonic.
mappings.

2. Existence. Let a be analytic in D and satisfy |e¢| <1. Then diffeomorphic
solutions of

2 fe=af;

will be locally quasiconformal in D, but the distortion as measured by the dila-
tation quotient (|.f;|+|/z|)/(|fz]—|/f:]) =1 +]a])/(1—]|a]) may be unbounded
at the boundary. In addition, since f;, = af,; where |a| <1, the mapping satisfies

Jzz=0and thus is harmonic. Conversely, each univalent, orientation-preserving,
harmonic mapping f of D satisfies (2) for some analytic function a with |a| <1.
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