QUASICONFORMAL ANALOGUES OF THEOREMS OF KOEBE AND HARDY-LITTLEWOOD

K. Astala and F. W. Gehring

Dedicated to Professor George Piranian on his seventieth birthday

1. Introduction. Suppose that D is a domain in euclidean n-space \mathbb{R}^n . We say that D is *uniform* if there exist positive constants a and b such that each pair of points $x_1, x_2 \in D$ can be joined by a rectifiable arc $\gamma \subset D$ for which

$$(1.1) l(\gamma) \le a|x_1 - x_2|$$

and

(1.2)
$$\min_{j=1,2} l(\gamma_j) \le bd(x, \partial D)$$

for each $x \in \gamma$; here $l(\gamma)$ denotes the length of γ and γ_1, γ_2 the components of $\gamma \setminus \{x\}$.

Suppose next that D and D' are domains in \mathbb{R}^n and that $f: D \to D'$ is K-quasi-conformal with Jacobian J_f . Then $\log J_f$ is integrable over each ball $B \subset D$ and we set

$$(1.4) \qquad (\log J_f)_B = \frac{1}{m(B)} \int_B \log J_f \, dm.$$

In particular, for each $x \in D$ we let

(1.5)
$$a_f(x) = \exp\left(\frac{1}{n}(\log J_f)_{B(x)}\right),$$

where $B(x) = B(x, d(x, \partial D))$, the open ball with center x and radius equal to the distance $d(x, \partial D)$ from x to ∂D . If n = 2 and f is conformal in D, then $\log J_f$ is harmonic,

$$(\log J_f)_{B(x)} = \log J_f(x) = 2 \log |f'(x)|$$

and hence $a_f(x) = |f'(x)|$.

We observed recently in [1] that for certain distortion properties of quasiconformal mappings the function a_f plays a role exactly analogous to that played by |f'| when n=2 and f is conformal. We investigate this analogy further by establishing in this paper quasiconformal versions of the following two well-known results due to Koebe [8, p. 22] and Hardy-Littlewood [6], respectively.

1.6. THEOREM. Suppose that D and D' are domains in \mathbb{R}^2 . If $f: D \to D'$ is conformal, then

Received July 25, 1984.

This research was supported in part by a grant from the U.S. National Science Foundation.

Michigan Math. J. 32 (1985).