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We denote by JC the set of functions f univalent and analytic in the right half
plane Re z > 0 which satisfy the condition

lim sup x2| f(x)| = 1.
X — 0
This class was introduced by Hayman [9], who proved that each function
Jfe 3L is the Laplace transform of a function a(¢):

J(z)= S: a(tye **dt, Rez>0.

The “Koebe function” for 3C is k(z) =z 2, the corresponding inverse trans-
form being a(¢) =¢. Hayman [9, p. 6] showed that

M |° 1rasinlay=|" [ka+inldy=m, sese.
Set a(t)=0 for ¢ =0. The inverse Fourier transform of f(1+iy) is a(f)e™".
Hence a(¢) € C(R) and

Ko=sup|a(1)|
fed
is finite. If fe 3C and A > 0 then A2 f(\z) € 3C and the inverse transform of N2 f(Az)
is Aa(t/\). We deduce that

la()| = Kpt, 0<t<oo, feIC.

Such “homogeneity” arguments will appear frequently in this paper.
One of the main results of [9] is the relation

Ko= lim = supf|a,|: fe S},
nowo N
where S is the usual class of functions f(z) =z+ X,_5 a,z" univalent in |z| <1.
Hayman’s “asymptotic Bieberbach conjecture” Ky=1 remained unproved until
recently, the best known estimate having been Horowitz’s K, =1.066 [11]. Nehari
[12], and later Bombieri [3], proved that Ky =1 implies Littlewood’s conjecture
|a,| =4n|ag| for the coefficients of non-vanishing univalent functions. Con-
versely, Hamilton [6] showed that the truth of Littlewood’s conjecture implies
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