ON THE RADIAL LIMITS OF FUNCTIONS WITH HADAMARD GAPS

D. Gnuschke and Ch. Pommerenke

To George Piranian, on the occasion of his retirement

1. Introduction and results. We consider functions f with Hadamard gaps, i.e.

(1.1)
$$f(z) = \sum_{k=0}^{\infty} a_k z^{n_k}, \quad \frac{n_{k+1}}{n_k} \ge \lambda > 1 \quad (k = 0, 1, ...),$$

that are analytic in the unit disk D. Let

(1.2)
$$M(r) = \max_{|z|=r} |f(z)| \quad (0 \le r < 1)$$

and let dim E denote the Hausdorff dimension, i.e.

 $\dim E = \inf \{ \delta : E \text{ has } \delta \text{-dimensional Hausdorff measure } 0 \}.$

It is clear that $0 \le \dim E \le 1$ for $E \subset \partial \mathbf{D}$.

If (a_k) is bounded then f is a normal function. Hence angular limits, radial limits and asymptotic values are the same by the Lehto-Virtanen theorem [14, p. 268]. On the other hand, if (a_k) is unbounded then f is not a normal function [15], and Murai [13] (see also [6]) has proved that f has the asymptotic value ∞ at every point of $\partial \mathbf{D}$.

We shall consider the radial behaviour at points ζ of $\partial \mathbf{D}$. If $\sum |a_k| = \infty$ then

(1.3) Re
$$f(r\zeta) \to +\infty$$
 as $r \to 1-0$

holds on a set E with dim E > 0 if $\lambda > 3$ and with dim E = 1 if $n_{k+1}/n_k \to \infty$; see MacLane [11] and Hawkes [7, p. 28].

On the other hand, Csordas, Lohwater and Ramsey [5] have shown that, for any $\lambda > 1$,

(1.4)
$$\sum_{k} |a_k| = \infty, \quad (a_k) \text{ bounded}$$

implies that (1.3) holds on a set E of positive capacity which also has positive Hausdorff dimension. Their proof is based on results of Kahane, Weiss and Weiss [9], and the same is true of the following generalization.

THEOREM 1. For $\lambda > 1$, there are positive numbers α, β, γ with the following property: If f has the form (1.1) and if

(1.5)
$$\sum_{k} |a_k| = \infty, \quad \frac{|a_k|}{|a_0| + \cdots + |a_k|} \le \alpha \quad (k \ge l),$$

then there is a closed set $E \subset \partial \mathbf{D}$ with dim $E \geq \beta$ such that

Received January 19, 1984. Revision received April 6, 1984. Michigan Math. J. 32 (1985).