ON CERTAIN TRANSCENDENTAL NUMBERS

M. L. Robinson

In this note we deduce some consequences of the Lindemann-Weierstrass theorem and the Gelfond-Schneider theorem. In a simple fashion we prove certain pairs of numbers are algebraically independent. We also show certain number classes contain only transcendental numbers. Examples include the algebraic independence of $e^2 \cos 3$ and $e^2 \sin 3$ and the transcendence of

log sin 2, sin log 2,
$$\cos^{-1}(\exp(2))$$
, $\exp(\cos^{-1}2)$, and $\sum_{n=1}^{\infty} \frac{\cos(\sqrt{2}n)}{n}$.

One form of the Lindemann-Weierstrass theorem [1, p. 20] states that if $\alpha_1, \ldots, \alpha_n$ are algebraic, then $e^{\alpha_1}, \ldots, e^{\alpha_n}$ are algebraically independent if and only if $\alpha_1, \ldots, \alpha_n$ are linearly independent over the rationals. It follows at once that e^{α} is transcendental for all non-zero algebraic α . But what about the arithmetic nature of the real and imaginary parts of e^{α} ? The transcendence of e^{α} insures that at least one of $Re(e^{\alpha})$ and $Im(e^{\alpha})$ is transcendental. But much more is true if the real and imaginary parts of α are both non-zero. In this case, a corollary of the following theorem shows that $Re(e^{\alpha})$ and $Im(e^{\alpha})$ are in fact algebraically independent.

THEOREM 1. Suppose α and β are algebraic numbers. Then $e^{\alpha} \cos \beta$ and $e^{\alpha} \sin \beta$ are algebraically independent if and only if α and β i are linearly independent over the rationals.

Proof. Let K denote the field of algebraic numbers. Then the following implications hold:

- $e^{\alpha}\cos\beta$ and $e^{\alpha}\sin\beta$ are algebraically dependent.
- \Leftrightarrow Tr. deg. $K(e^{\alpha}\cos\beta, e^{\alpha}\sin\beta) \leq 1$.
- $\Leftrightarrow \text{Tr. deg.}_{K} K(e^{\alpha} \cos \beta + ie^{\alpha} \sin \beta, e^{\alpha} \cos \beta ie^{\alpha} \sin \beta) \leq 1.$ $\Leftrightarrow \text{Tr. deg.}_{K} K(e^{\alpha + \beta i}, e^{\alpha \beta i}) \leq 1.$
- $\Leftrightarrow e^{\alpha+\beta i}$ and $e^{\alpha-\beta i}$ are algebraically dependent.
- $\Leftrightarrow \alpha + i\beta$ and $\alpha i\beta$ are linearly dependent over the rationals (by the Lindemann-Weierstrass theorem).

 $\Leftrightarrow \alpha$ and βi are linearly dependent over the rationals.

The proof is complete.

COROLLARY. Suppose α is an algebraic number whose real and imaginary parts are both non-zero. Then the real and imaginary parts of e^{α} are algebraically independent.

Received July 25, 1983.

The author acknowledges support received from a Naval Academy Research Council Grant.

Michigan Math. J. 31 (1984).