DISTANCE ESTIMATES AND PRODUCTS OF TOEPLITZ OPERATORS

Rahman Younis

1. Introduction. In this paper we establish some results concerning distance estimates. One of these results produces an equivalent condition to the Axler-Chang-Sarason-Volberg theorem. In order to state our results more precisely, we fix some notations which will be used throughout the paper.

By D we will denote the open unit disc in the complex plane, and by ∂D its boundary. Let L^{∞} denote the algebra of bounded measurable functions with respect to the Lebesgue measure on ∂D , and H^{∞} denote the subalgebra of L^{∞} consisting of all bounded analytic functions in D. We identify L^{∞} with C(X), the space of continuous functions on X, where X is the maximal ideal space of L^{∞} . The algebra $H^{\infty} + C$ is a closed subalgebra of L^{∞} ; here $C = C(\partial D)$. It is known [14] that $H^{\infty}+C$ is the smallest closed subalgebra of L^{∞} which contains H^{∞} . A closed subalgebra B of L^{∞} which contains H^{∞} is usually called a Douglas algebra. The maximal ideal space of B is denoted by M(B). The reader is referred to [16] and [10] for the theory of Douglas algebras and to [9] for uniform algebras. The largest C^* -subalgebra of $H^{\infty} + C$ will be denoted by OC. Thus OC = $(H^{\infty}+C)\cap \overline{(H^{\infty}+C)}$, where bar denotes complex conjugation. The sets in the Shilov decomposition [19] of $M(L^{\infty})$ associated with $H^{\infty}+C$ will be called QC-level sets. For $\phi \in M(H^{\infty} + C)$ the support of the representing measure for ϕ is called a support set. If A is a closed subspace of a Banach space Y and $x \in Y$, then dist $(x, A) = \inf\{\|x - y\| : y \in A\}$. The annihilator of A in Y* will be denoted by A^{\perp} , and Ext (A^{\perp}) denotes the set of the extreme points of ball (A^{\perp}) . If B is a subset of Y, then co(B) denotes the convex hull of B.

The following results will be established.

THEOREM 1. If A and B are two Douglas algebras such that $H^{\infty} + C = A \cap B$, then $\operatorname{dist}(h, H^{\infty} + C) = \max\{\operatorname{dist}(h, A), \operatorname{dist}(h, B)\}$ for all h in L^{∞} . Conversely, if the above condition is true then $H^{\infty} + C = A \cap B$.

This result produces an equivalent condition to the Axler-Chang-Sarason-Volberg theorem. A proof of Theorem 1 appears in Section 2.

THEOREM 2. Let A and B be two closed subalgebras of C(X), where X is a compact Hausdorff space. Then the following conditions are equivalent:

- (1) $\operatorname{dist}(f, A \cap B) = \max{\{\operatorname{dist}(f, A), \operatorname{dist}(f, B)\}\}} \text{ for all } f \text{ in } C(X);$
- (2) Co(ball $A^{\perp} \cup$ ball B^{\perp}) = ball $(A \cap B)^{\perp}$;
- (3) $\operatorname{Ext}((A \cap B)^{\perp}) \subset \operatorname{Ext}(A^{\perp}) \cup \operatorname{Ext}(B^{\perp}).$

In Section 3, we show that condition (1) of Theorem 2 is not true in general.

Received April 15, 1983. Revision received October 31, 1983. Michigan Math. J. 31 (1984).