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1. Introduction. In this paper we establish some results concerning distance
estimates. One of these results produces an equivalent condition to the Axler-
Chang-Sarason-Volberg theorem. In order to state our results more precisely,
we fix some notations which will be used throughout the paper.

By D we will denote the open unit disc in the complex plane, and by aD its
boundary. Let L™ denote the algebra of bounded measurable functions with
respect to the Lebesgue measure on dD, and H” denote the subalgebra of L%
consisting of all bounded analytic functions in D. We identify L* with C(X), the
space of continuous functions on X, where X is the maximal ideal space of L*.
The algebra H”+ C is a closed subalgebra of L™; here C=C(aD). It is known
[14] that H*+C is the smallest closed subalgebra of L™ which contains H®.
A closed subalgebra B of L™ which contains H* is usually called a Douglas
algebra. The maximal ideal space of B is denoted by M(B). The reader is referred
to [16] and [10] for the theory of Douglas algebras and to [9] for uniform alge-
bras. The largest C*-subalgebra of H™ + C will be denoted by QC. Thus QC=
(H”+C)N(H*+C), where bar denotes complex conjugation. The sets in
the Shilov decomposition [19] of M(L*) associated with H* + C will be called
QOC-level sets. For ¢ € M(H™ + C) the support of the representing measure for ¢
is called a support set. If A is a closed subspace of a Banach space Y and x€Y,
then dist(x, A) =inf{|[x—y|: y €A}. The annihilator of A in Y* will be denoted
by A%, and Ext(A") denotes the set of the extreme points of ball(4*). If Bis a
subset of Y, then co(B) denotes the convex hull of B.

The following results will be established.

THEOREM 1. If A and B are two Douglas algebras such that H® + C=ANB,
then dist(h, H” + C) =max{dist(h, A), dist(h, B)} for all h in L™. Conversely,
if the above condition is true then H*+C=ANB.

This result produces an equivalent condition to the Axler-Chang-Sarason-
Volberg theorem. A proof of Theorem 1 appears in Section 2.

THEOREM 2. Let A and B be two closed subalgebras of C(X), where X is a
compact Hausdorff space. Then the following conditions are equivalent:

(1) dist(f,ANB)=max{dist(f, A), dist(f,B)} for all fin C(X);

(2) Co(ballA*Uball B*)=Dball(ANB)*;

(3) Ext((ANB)Y)CExt(A*)UExt(B").
In Section 3, we show that condition (1) of Theorem 2 is not true in general.
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