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1. Introduction. Let X be a (Hausdorff) topological space and let C(X)
denote the space of bounded continuous real-valued functions on X. The space
of (non-negative) bounded o-additive Baire measures on X is denoted by M, (X))
(M, (X)). This paper deals with the following countability properties:

(a) A subset M of M,(X) is called countably separated (c.s.) if there exists a
sequence { f,} in C(X) such that for every u and v€M

(%) andu=Sj§1dV for all n=p=".

(b) A subset M of M,(X) (resp. M, (X)) is called countably determined
(c.d.) in M, (X) (resp. in M, (X)) if there exists a sequence {f,} in C(X) such
that for every p €M, (X) (resp. p€M, (X)) and véM

andu=8f,,dv for all n=p€eM.

Countability properties of this kind occur naturally in classical and functional
analysis, probability theory and general topology. Here are some examples.

The classical moment problem (see VII.3 in [6]) relates to R and the particular
sequence f,(x)=x", x €R. It is clear that if u, » are carried by a bounded closed
interval, then (*) holds. If u, v are arbitrary Baire measures on R, (*) does not
hold, even if all moments are finite (see example on page 227 in [6]). However, a
different sequence { f,,] exists such that (*) holds for every ¢ and v € M, (R), that
is, M, (R) is c.s. In fact this is true in a more general set-up (see §4).

The c.s. property is related to the separability of C(X) as follows: M, (X) is
c.s. if and only if C(X) is separable in the weak topology ¢(C(X), M, (X)), or
equivalently in any locally convex topology which yields M, (X) as dual space
(see §4).

A topological space Y is called separably submetrizable [20] if there exists a
sequence {g,} in C(Y) which separates points of Y. It is clear that Y is separably
submetrizable if and only if Y with its Baire o-algebra is a countably separated
measurable space [5, p. 6] if and only if the set M= {§,: y €Y} of Dirac measures
on Y is c.s.

If M is a c.s. subset of M;(X) and (f,] is as in the definition of the c.s.
property, the sequence g,: M —>R, n=1,2,..., with
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