ON THE MEAN BOUNDARY BEHAVIOR AND THE TAYLOR COEFFICIENTS OF AN INFINITE BLASCHKE PRODUCT

Patrick Ahern and Hong Oh Kim

Introduction. If $\{z_n\}$ is a sequence (finite or infinite) of complex numbers of modulus less than 1 such that $\sum (1-|z_n|) < \infty$, then the Blaschke product

$$B(z) = \prod_{n} \frac{|z_n|}{z_n} \frac{z_n - z}{1 - \bar{z}_n z}$$

converges uniformly on compact subsets of the unit disc U. We let \mathfrak{G}_{∞} denote the set of Blaschke products whose zero sequences are infinite. In this paper we show that

$$\inf_{B \in \mathfrak{G}_{\infty}} \overline{\lim}_{r \to 1} (1-r)^{-1} \int_{-\pi}^{\pi} (1-|B(re^{i\theta})|)^{2} \frac{d\theta}{2\pi} = \max_{0 \le x < 1} (1+\sqrt{1-x}) {}_{2}F_{1}({}^{1/2}{}_{2}{}^{1/2};x) = \gamma_{0}$$

where ${}_2F_1(^{1/2}{}_2^{1/2};x)$ is a hypergeometric function. Using one of Gauss' identities for the hypergeometric functions and tables for the complete elliptic integrals (see [2, pp. 608-609]), we obtain the estimate $\gamma_0 \ge .285$.

We have two applications of this result. In [2], Newman and Shapiro showed that if $B(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathfrak{G}_{\infty}$ then $\overline{\lim}_{n \to \infty} n |a_n| \ge 1/\pi = .3183 \cdots$. We improve this to show that if $B(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathfrak{G}_{\infty}$ then $\overline{\lim}_{n \to \infty} n |a_n| \ge \sqrt{\gamma_0/2} \ge .37749$. In the other direction we modify a method of Newman and Shapiro [2] to show that if $\epsilon > 0$ is given, there is a $B(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathfrak{G}_{\infty}$ such that $\overline{\lim}_{n \to \infty} n |a_n| \le 2/e + \epsilon = .735 \cdots + \epsilon$. We conjecture that if $B(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathfrak{G}_{\infty}$ then $\overline{\lim}_{n \to \infty} n |a_n| \ge 2/e$.

It is well known that if $B(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{B}_{\infty}$ then $\sum_{n=1}^{\infty} n |a_n|^2 = \infty$. As another application of our main theorem we improve this to show that if $B(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{B}_{\infty}$ then

$$\overline{\lim}_{n\to\infty} \sum_{k\in I_n} k|a_k|^2 \geqslant \frac{\gamma_0}{8} \geqslant .0356,$$

where $I_n = \{k : k \text{ is an integer, } 2^n \leq k < 2^{n+1}\}.$

We wish to thank Dick Askey for identifying a certain series that arose in our calculations as a hypergeometric function, and for showing us how to use Gauss' formula and the tables to evaluate it.

1. We begin with a lemma. For 0 < r < 1 define $\varphi_r(z) = (z-r)/(1-rz)$.

Received August 26, 1982.

The first author was supported by NSF grant 144 Q 712 and the second author was supported by a Korean Science Foundation grant.

Michigan Math. J. 31 (1984).