C_0 -FREDHOLM OPERATORS. III

Hari Bercovici

An operator T, acting on a Hilbert space, is said to be of class C_0 (cf. [6]) if T is a completely nonunitary contraction and u(T)=0 for some nonzero function u in H^{∞} . An operator T is said to have property (P) (cf. [1, part II]) if the equalities $\ker X = \{0\}$ and $\ker X^* = \{0\}$ are equivalent for every operator X in the commutant $\{T\}'$ of T. In the two preceding papers ([1]) we studied the multiplicative semigroup $\Phi(T',T)$ of C_0 -Fredholm operators, associated with a given pair (T',T) of operators of class C_0 . We recall that $\Phi(T',T)$ consists of those operators X intertwining T' and T (T'X = XT) with the following properties:

- (A) $T \mid \ker X$ and $T_{\ker X^*} (= (T^* \mid \ker X^*)^*)$ have property (P); and
- (B) the mapping $X_*: \mathfrak{M} \mapsto (X\mathfrak{M})^-$, $\mathfrak{M} \in \operatorname{Lat}(T_{(\ker X)^{\perp}})$ is an isomorphism of $\operatorname{Lat}(T_{(\ker X)^{\perp}})$ onto $\operatorname{Lat}(T \mid (\operatorname{ran} X)^-)$.

Here, as usual, $(\mathfrak{M})^-$ stands for the closure of the set \mathfrak{M} . When T'=T, we use the notation $\Phi(T)$ for $\Phi(T',T)$ and note that $\Phi(T)$ is contained in $\{T\}'$. If T is the zero operator on \mathfrak{IC} , then $\Phi(T)$ coincides with the familiar class of Fredholm operators on \mathfrak{IC} .

In [1, part I, Lemma 3.3] we proved that the operators $T \mid \ker X$ and $T_{\ker X^*}$ are quasisimilar provided that T is of class C_0 and X belongs to the bicommutant $\{T\}''$ of T (cf. also [9]). We also know from [1, part II] that property (P) is a quasisimilarity invariant in the class C_0 . Therefore, in order to verify that an operator X in $\{T\}''$ is C_0 -Fredholm, it suffices to verify (B) and half of (A). In this paper we prove that condition (B) is a consequence of (A) for X in $\{T\}''$, thus establishing the following result.

THEOREM 1. Let T be an operator of class C_0 and let $X \in \{T\}''$. Then X is C_0 -Fredholm if and only if $T \mid \ker X$ has property (P).

We had previously noted (cf. [1, part I, Proposition 3.5]) that Theorem 1 is true in case ker $X = \{0\}$. Observe that property (B) is not satisfied for every X in $\{T\}''$ even in the case of nilpotent operators T; this follows from the discussion given below of C_0 -Fredholm operators in the case when T is an algebraic operator (cf. Example 9 below).

Let T be an arbitrary operator of class C_0 , and let m denote the minimal function of T. It follows from results of [3] and [2] that for every X in $\{T\}''$ there exist functions u, v in H^{∞} such that v and m are relatively prime $(v \wedge m = 1)$ and

$$v(T)X = u(T)$$

or, using the notation of [6], X = (u/v)(T). It follows from the proof of the main theorem in [8] that v can be chosen independently of X.

Received April 14, 1983.

The author was supported in part by a grant from the National Science Foundation. Michigan Math. J. 30 (1983).