SURFACES IN MINKOWSKI 3-SPACE ON WHICH *H* AND *K* ARE LINEARLY RELATED

Tilla Klotz Milnor

1. Introduction. In this paper, we study surfaces in Minkowski 3-space M^3 on which mean curvature H and extrinsic curvature K satisfy a non-trivial linear relation $\alpha + \beta H + \gamma K \equiv 0$. Most results are based on formalisms developed in [3], which extend to the case of indefinite metric complex analytic techniques one might have expected to apply only in the Riemannian case.

On spacelike or timelike surfaces in M^3 with $\alpha + \beta H + \gamma K \equiv 0$ and $\beta^2 \neq 4\alpha\gamma$, we show the existence of a certain holomorphic quadratic differential associated with the geometry of the immersion. This allows the introduction of special coordinates, and identifies three different flat metrics, among them the exotic metric $\Gamma = \alpha I + \beta II + \gamma III$ studied by J. A. Wolf in [10]. That Γ is flat on similar surfaces in Euclidean 3-space E^3 was observed by Darboux in [2], a fact we learned recently from Wolf. The use of flat metrics here yields some information in-the-large about the surfaces in question.

There is a rich variety of surfaces in M^3 on which H or K is constant. (See [1], [4], [6] and [9] for examples.) Moreover, H and K are linearly related on any surface equidistant in M^3 from a surface on which H or K is constant. We show below that a spacelike or timelike surface in M^3 on which $\alpha + \beta H + \gamma K \equiv 0$ with $\beta^2 \neq 4\alpha\gamma$ is equidistant from at least one surface with H or K constant. In addition, we extend to M^3 the classical theorem of Bonnet (see [3]) which associates to a surface of constant $H \neq 0$ (resp. K > 0), an equidistant surface of constant K > 0 (resp. $H \neq 0$). This extension is known to geometers, but seems not to be in the literature.

We assume C^{∞} smoothness wherever possible. The symbols α , β , γ and c always denote constants.

2. Formal preliminaries. Suppose that S is an oriented surface, and that $A = E dx^2 + 2F dx dy + G dy^2$ and $B = L dx^2 + 2M dx dy + N dy^2$ are real quadratic forms with det $A \neq 0$. Compute the curvatures H = H(A, B), K = K(A, B) and H' = H'(A, B) by setting

$$2H = \operatorname{tr}_A B$$
, $K = \det B/\det A$, $2H' = \sqrt{H^2 - K}$

with iH' < 0 in case $H^2 < K$. Denote the intrinsic curvature of A by K(A). Wherever $H' \neq 0$, define the skew forms A' = A'(A, B) and B' = B'(A, B) by

$$H'A'=B-HA$$
, $H'B'=HB-KA$.

Anywhere on S, the form W = W(A, B) is given by

$$\sqrt{|\det A|} W = \begin{vmatrix} dy^2 - dx \, dy & dx^2 \\ E & F & G \\ L & M & N \end{vmatrix}.$$

Received September 20, 1982. Michigan Math. J. 30 (1983).