A LATTICE POINT PROBLEM IN HYPERBOLIC SPACE

Peter Nicholls

1. Introduction. We consider the model of *n*-dimensional hyperbolic space which is given by the interior of the unit ball, $B = \{x : |x| < 1\}$, where $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ and $|x| = (\sum x_i^2)^{1/2}$. Lines in the space are arcs of circles orthogonal to the unit sphere, $S = \{x : |x| = 1\}$, and angle is Euclidean angle. The hyperbolic metric ρ is derived from the differential

$$d\rho = \frac{2|dx|}{1 - |x|^2}$$

and the hyperbolic lines are geodesics for this metric.

A Moebius transform preserving B is a product of an even number of inversions in spheres orthogonal to S and such transforms preserve the hyperbolic metric ρ . We denote by M the full group of all Moebius transforms preserving B. If G is a discrete subgroup of M and we select a point $x \in B$, then the collection of G-equivalents of x form a lattice of points in B. We shall be concerned in this paper with the way in which such a lattice is distributed in B.

Suppose x_1, x_2 are two points of B and s is a positive real number. For the discrete group G we define the counting function $N(s, x_1, x_2)$ to be the number of transforms $\gamma \in G$ such that $\rho(x_1, \gamma(x_2)) < s$. We are concerned with the asymptotic behavior of $N(s, x_1, x_2)$ as s approaches infinity – this can be viewed as the hyperbolic analog of the Gauss circle problem.

The Dirichlet region D for the group G is defined by

$$D = \{x \in B : \rho(x, 0) < \rho(\gamma(x), 0) \text{ all } \gamma \in G, \gamma \neq I\}.$$

Now if γ is a Moebius transformation we denote by $\gamma'(x)$ the Jacobian matrix of γ at x and by $|\gamma'(x)|$ the positive number such that $\gamma'(x)/|\gamma'(x)|$ is orthogonal. In other words $|\gamma'(x)|$ is the linear change of scale at x, the same in all directions. Since $|\gamma'(x)| = (1-|\gamma(x)|^2)(1-|x|^2)^{-1}$ (see [1: ch. II]) then $|\gamma'(x)| < 1$ if and only if $|\gamma(x)| > |x|$ and we see that

$$D = \{x \in B : |\gamma'(x)| < 1 \text{ all } \gamma \in G, \gamma \neq I\}.$$

Hyperbolic volume V in B is derived from the differential

$$dV = \frac{2^n dx_1 dx_2 \dots dx_n}{(1-|x|^2)^n},$$

where $x = (x_1, ..., x_n)$. We denote by V(G) the hyperbolic volume of D. In this paper we are concerned solely with the situation when $V(G) < \infty$ (the infinite volume case is discussed in an earlier paper of the author [11]).

Received May 24, 1982. Revision received March 22, 1983.

Research supported in part by N.S.F. grant no. MCS 8102393.

Michigan Math. J. 30 (1983).