A REMARK ON QUASI-CONFORMAL MAPPINGS
AND BMO-FUNCTIONS

Kari Astala
Let GCR” (n22) be a domain and let #: G — R be a locally integrable func-

tion. We say that u has bounded mean oscillation in G, and denote u € BMO(G),
if
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Here the supremum is taken over all balls BC G; m(B) stands for the Lebesgue-
measure of B and ug for the mean value of u over B, i.e.

u(x) dx.
m(B) SB

H. M. Reimann [5] has established a close connection between quasi-conformal
mappings and the spaces BMO(G) by proving the following theorems:

1. THEOREM ([S: Theorem 4]; see also [4: p. 58]). If f: G —> G’ is a K-quasi-
conformal homeomorphism, then
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Jfor all functions u € BMO(G’). The constant C in (1) depends only on K and the
dimension n.

2. THEOREM ([S: Theorem 3]). If an orientation preserving homeomorphism
S+ G — G’ has the properties
(@) fisdifferentiable a.e. and f&€ ACL,
(b) the mapping u— u-f is a bijective isomorphism of the spaces BMO(G’)
and BMO(G) for which ||uef|« ¢ <C|ul«, ¢
then f is quasi-conformal.

For definitions of quasi-conformal and ACL mappings see [8].
The purpose of this note is to show that by localizing the problem the analytic
assumptions (a) in Theorem 2 can be dropped. More precisely, we shall prove

3. THEOREM. Let f: G — G’ be an orientation preserving homeomorphism. If
there exists a constant C such that
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