ON ZEROS OF p-ADIC FORMS

D. J. Lewis and Hugh L. Montgomery

1. Introduction. In the 1930’s E. Artin conjectured (see [3, p. x]) that a form F
of degree d in n variables with coefficients in a p-adic field Q, must have a non-
trivial zero in that field if n> d2. He was aware that for each d and each p there
is a form of degree d in d? variables with coefficients in Qp with no nontrivial
p-adic zero; e.g., the reduced norm of a central simple division algebra over Q,,.
As a first step towards Artin’s conjecture, R. Brauer [5] showed that there is a
function ¢, (d) such that if n> ¢,(d), then F has a nontrivial p-adic zero. Ter-
janian [16] disproved Artin’s conjecture by exhibiting a 2-adic quartic form in 18
variables with no nontrivial 2-adic zero; later [17] he gave such an example with
20 variables. Generalizing Terjanian’s construction, Browkin [6] gave counter-
examples for each prime p, but always in fewer than d> variables. Recently
Arhipov and Karacuba [1, 2] greatly improved on this by showing that for each p
there are infinitely many d such that

d
bld)> exp( (log d)2(log log d)° )

By introducing a more efficient principle of p-adic interpolation (Lemma 1), we
sharpen their result slightly.

THEOREM 1. Let p be a given prime and suppose € > 0. For infinitely many d
there is a form F in Z[x,,...,x,] of degree d with

d
i e""( (log d)(loglog d) ¢ )

such that if ay,...,a, €Z and F(a,,...,a,)=0 (mod p%), then a=- - - =a,
0 (mod p).

]

It is not clear how close to best possible the above might be. The upper bound
for ¢,(d) that one obtains from Brauer’s argument is an iterated exponential
which is very much larger than the lower bound we have obtained.

It would be nice to know precisely when ¢,(d) = d?. Meyer [14] found that
¢,(2) =4 for all p. Demyanov {10] and Lewis [13] independently showed that
¢,(3) =9 for all p (for other proofs see Springer [15] and Davenport [9]). Ax
and Kochen [4] and Ersov [11, 12] independently proved there exists a function
Po(d) such that ¢,(d)=d? for all p> p,(d). Cohen [8] demonstrated that it is
possible, at least in principle, to compute an upper bound for py(d). It is
interesting to note that in all the known examples for which ¢,(d) > d? one has
d even, composite and divisible by p—1. Thus it could be that these are the only
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