IDEALS OF INJECTIVE DIMENSION 1

Eben Matlis

Introduction. Throughout this paper R is an integral domain with quotient field $Q \neq R$, and K = Q/R. The completion of R in the R-topology is denoted by H. Let I be a non-zero ideal of R, $S = \{1 - a \mid a \in I\}$, and E(R/I) the injective envelope of R/I. If $\mathfrak{J}(R)$ denotes the Jacobson radical of R, then $I \subset \mathfrak{J}(R)$ if and only if $R = R_S$. It has been proved elsewhere that $H/IH \simeq R/I$.

The main purpose of this paper is to examine the relationship between the injective envelope of R/I and the torsion-free cover of R/I in order to shed light on the condition: inj. $\dim_R I = 1$. This suggests consideration of the successively weaker conditions: (a) E(R/I) = Q/I, (b) inj. $\dim_R I = 1$ (i.e. Q/I is injective); and (c) $E(R/I) \subset Q/I$.

Condition (a) naturally leads to the study of the condition: (d) $Q/I \subset E(R/I)$; (i.e., Q/I is an essential extension of R/I) and the characterization of this condition is the key to the whole question. It is proved that $Q/I \subset E(R/I)$ if and only if $I \subset \mathcal{J}(R)$ and the only ideals of R mapping onto R/I are the principal ideals of R. Another important tool in the investigation is the notion of a complemented extension A of R. Of great importance here is the proposition that if A is a complemented extension of R, and if I is the contraction of an ideal of A contained in $\mathcal{J}(A)$, then $A = R_S$.

The main results of this paper are summarized in the following theorem.

MAIN THEOREM. (I) The following statements are equivalent:

- (1) E(R/I) = Q/I.
- (2) Inj. dim_R I = 1 and $I \subset \mathfrak{J}(R)$.
- (3) The canonical map: $H \rightarrow R/I$ is a torsion-free cover.
- (II) The following statements are equivalent:
 - (1) Inj. dim_R I = 1 (i.e. Q/I is injective).
- (2) R_S is a complemented extension of R; inj. $\dim_{R_S} I_S = 1$; and inj. $\dim_{R_S'} R_S' \le 1$, where $R_S' = \bigcap R_N \{ N \in \max \operatorname{spec} R \mid I \not\subset N \}$ is the complement of R_S .
- (3) The canonical map: $H \rightarrow R/rI$ is a torsion-free lifting for all non-zero $r \in R$. (III) The following statements are equivalent:
 - (1) $E(R/I) \subset Q/I$.
 - (2) R_S is a complemented extension of R and inj. $\dim_{R_S} I_S = 1$.
 - (3) The canonical map $H \rightarrow R/I$ is a torsion-free lifting.

In Section 1 complemented extensions of R are discussed. In Section 2 conditions (a), (b), (c), and (d) are related to the notion of complemented extensions of R. In Section 3 torsion-free covers and liftings are discussed and are related to conditions (a), (b) and (c). Finally, in Section 4 the results of the first three sections are applied to valuation rings, Noetherian domains, and h-local domains. There are examples given illustrating the first three sections, and counter-examples to possible conjectures.

Received January 19, 1982. Revision received April 29, 1982. Michigan Math. J. 29 (1982).