ON PARTIALLY TEICHMÜLLER BELTRAMI DIFFERENTIALS

Frederick P. Gardiner

Introduction. If E is a measurable subset of a Riemann surface R, we consider two problems associated with quasiconformal mappings F from R to another Riemann surface R_1 with the property that F is conformal on R-E. The first problem is to characterize extremal mappings in the same Teichmüller class as F subject to the condition that they be conformal on R-E. Using a modified version of the "main inequality" of Reich and Strebel we can show that mappings F extremal in this sense have partially Teichmüller form. By this we mean there is an integrable holomorphic quadratic differential ϕ on the surface R_1 such that F^{-1} has Beltrami coefficient $k|\phi|/\phi$ on F(E) and zero on $R_1-F(E)$. It also follows that such differentials are extremal. To a certain extent these results can be viewed as analogous to those presented by Reich in [6]. In Reich's notation we are treating the case where $b_1=0$, which Reich says has special interest and is not included in his own treatment.

The second problem we consider concerns mappings F which are Teichmüller trivial on R and which are also conformal on R-E. The space of Beltrami differentials of such mappings is denoted by $M_0(R,E)$. We are unable to show that $M_0(R,E)$ is connected but can show that given μ in $M_0(R,E)$ corresponding to F there is a mapping μ_1 in $M_0(R,E)$ corresponding to F_1 such that if μ_2 is the Beltrami coefficient for $F \circ F_1^{-1}$ then $\|\mu_i\|_{\infty} < \|\mu\|_{\infty}$ for i=1 and i=2. The result also gives real analytic parametric path of Beltrami differentials in $M_0(R,E)$ connecting μ to μ_1 .

1. Preliminaries. Let R be a Riemann surface, C be the union of the ideal boundary curves of R and let σ be a closed subset of C. It is possible for either C or σ to be empty. When C is nonempty we consider it to be part of R so in this case R is a bordered Riemann surface.

Let $A(R, \sigma)$ be the space of integrable, holomorphic, quadratic differentials on R which are real with respect to real boundary parameters at points of $C-\sigma$. If R is of finite type with genus g, n boundary contours and k interior punctures and σ is a finite subset of C, then from the Riemann-Roch theorem one can show that the real dimension of $A(R, \sigma)$ is

(1)
$$6(g-1) + 3n + 2k + \operatorname{card}(\sigma) + \rho$$

where ρ is the real dimension of the continuous group of holomorphic homeomorphisms of R. ρ can be positive only in special cases when g=1 or 0.

Let L(R) be the set of all Beltrami differentials on R. An element μ of L(R) is an assignment of a measurable function μ^z to each local parameter z such that

- (a) $\mu^z(z) \frac{d\bar{z}}{dz} = \mu^\zeta(\zeta) \frac{d\bar{\zeta}}{d\zeta}$ for any two parameters z and ζ with overlapping domains and
- (b) $\|\mu\|_{\infty} = \sup\{\|\mu^{z}(z)\|_{\infty} \text{ for all } z\} < \infty$.

Received March 25, 1981. Revision received November 30, 1981.

Partially supported by NSF.

Michigan Math. J. 29 (1982).