INTERPOLATION BY FUNCTIONS IN BERGMAN SPACES

Richard Rochberg

I. Introduction. We begin by describing a special case of our main result. Let U be the upper half plane and let A be the Bergman space consisting of functions f which are holomorphic in U and for which

(1.1)
$$||f|| = \iint_{U} |f(x+iy)| \, dx \, dy$$

is finite. Let $S = \{\zeta_n\}$ be a sequence of points in U; $\zeta_n = x_n + iy_n$. We are interested in the relation between the geometry of S and the values which functions in A can take on S. Using the area mean value theorem for a disk centered at $\zeta = x + iy$ in U and having radius y we find that for any f in A

$$|f(\zeta)| \le c ||f|| y^{-2}.$$

Using a similar estimate for derivatives we find that

$$|f'(\zeta)| \le c ||f|| y^{-3}.$$

On the basis of (1.2) we see that the sequence $Tf = \{y_n^2 f(\zeta_n)\}$ is in $l^{\infty}(S)$. On the basis of the form of (1.1) and the analogy with the known results for the Hardy spaces we then ask for the relation between $l^1(S)$ and $\{Tf; f \in A\}$. (1.3) suggests one constraint. In order for there to be functions f_n in A which satisfy

$$(1.4) f_n(\zeta_m) = \delta_{n,m}$$

and which have $||f_n||$ uniformly bounded it is necessary that

(1.5)
$$\inf_{\substack{n,m\\n\neq m}} d(\zeta_n, \zeta_m) = K > 0.$$

Here $d(\cdot, \cdot)$ denotes the invariant distance (i.e., the hyperbolic distance) on U. A particular case of our main result is that this condition is very close to being sufficient.

THEOREM. There is a K_0 so that if S satisfies (1.5) with $K > K_0$ then $\{Tf; f \in A\} = l^1(S)$. In fact for all f in A

(a)
$$\sum_{n} y_n^2 |f(\zeta_n)| \le c \|f\|$$

and for any $\{\lambda_n\} \in l^1(S)$, there is an f in A with $||f|| \le c ||\{\lambda_i\}||$ and

(b)
$$y_n^2 f(\zeta_n) = \lambda_n \quad n = 1, 2 \dots$$

Received March 16, 1981.

This work supported in part by N.S.F. Grant MCS-8002689.

Michigan Math. J. 29 (1982).