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1. Introduction. Let I" be a dense subgroup of the real line R, endowed with the
discrete topology, and let K be the dual group of I'. For each ¢ in R, ¢, denotes the
element of K defined by e,(\) = ™ for any X in I. The mapping from ¢ to e, embeds
R continuously into K, and it is well known that the translation by e, defines
a strictly ergodic flow. Fix a positive v in T', and let K, be the compact subgroup
consisting of all x such that x(y)=1. If we put B8(x,¢) =x+e,, then 8 carries
K, x[0,2n/v) continuously onto K. Furthermore, 3 is one to one and its inverse,
B~1, is continuous except at points on K, . It follows that Borel sets are taken-to
Borel sets in both directions. Thus KX is represented measure theoretically, and almost
topologically, as a product space K, x[0,27/v). Also it can be easily seen that the
above flow, x+e,, on K can be characterized by the homeomorphism S on K,
defined by S(y)=y+e;,/,. This local product decomposition is very useful for
understanding the structure of K, and is also highly important in the study of
analyticity on compact abelian groups (cf. [6; Chapter II], and [5, Chapter VII, Sec-
tion 6]). Especially, we notice that, by using this decomposition, a representation of
quasi-invariant measures on K was shown by deLeeuw and Glicksberg [2].

Our principal objective in this article is to extend the local product decomposition
in quotients of the Bohr group to minimal flows, and particular attention is given to
representing quasi-invariant measures on minimal flows. Moreover, as an application
of this representation, we investigate the maximality of algebras of analytic functions
associated with a minimal flow. Conceivably, our proof enables us to make clearer
the relation between Forelli’s generalization [4] of Wermer’s maximality theorem and
Muhly’s result [7; Corollary 3.1] concerning maximal weak-* Dirichlet algebras.

On the other hand, a famous theorem of Ambrose [1] showed that any measurable
ergodic flow can be represented as a flow built under a function. Our main result
may be regarded as a refinement of this theorem concerning continuous flows.

In the next section, we present some preliminary material which we shall need. In
Section 3, our representation of a minimal flow, Theorem 3.3, is obtained, and we
also give a representation of quasi-invariant measures. We deal with analytic
measures and provide simpler proofs of two known theorems concerning maximal
algebras in Section 4. We close with some remarks in Section 5.
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