REMARKS ON SUBSPACES OF H_p WHEN 0

N. J. Kalton and D. A. Trautman

1. Introduction. Let **T** be the unit circle in the complex plane and let Δ be the open unit disc. As usual H_p , $0 denotes the quasi-Banach space of all functions <math>f: \Delta \rightarrow C$ analytic in Δ such that

$$||f||_p^p = \sup_{0 < r \le 1} \int_{\mathcal{T}} |f(rw)|^p dm(w) < \infty$$

where m is normalized Lebesgue measure on the circle. By considering boundary values H_p can be identified with a closed subspace of $L_p(\mathbf{T})$.

In this paper we give a number of results on the closed subspaces of H_p . Our first result is to show that H_p can have no complemented locally convex subspaces; this answers a question of Shapiro (see [7]). Indeed, we show that H_p cannot have any locally convex subspaces with the Hahn-Banach Extension Property (HBEP). A closed subspace M of a quasi-Banach space X has HBEP if every continuous linear functional on M can be extended to a continuous linear functional on X.

Next we consider special subspaces of the type $H_p(M)$ where M is a set of non-negative integers. Then $H_p(M)$ is the closed linear span of $\{z^m : m \in M\}$. We show that $H_p(M)$ can only have HBEP if it is thick in the sense that if

$$M = \{m_n : n = 1, 2...\}$$
 where $m_1 < m_2 < m_3...$

then $m_n \le cn$ for some constant c. This again answers a question raised by Shapiro; Duren, Romberg and Shields [3] observed that $H_p(M)$ fails to have HBEP when M is a Hadamard gap sequence.

We also show that $H_p(M)$ is the range of a translation-invariant projection if and only if M is a finite union of arithmetic progressions modulo a finite set.

In the last section we discuss the nature of Banach subspaces of H_p . We conjecture that every Banach subspace of H_p has the Radon-Nikodym Property and show this is true for translation-invariant subspaces.

2. Preliminaries. We recall that a complex quasi-normed linear space X is called a quasi-Banach space and that if for some p, 0 , the quasi-norm obeys the law

$$||x_1 + x_2||^p \le ||x_1||^p + ||x_2||^p \quad x_1, x_2 \in X$$

then X is called a p-Banach space. The dual space of X will be denoted by X^* . If X^* separates the points of X, then the Mackey topology on X is the finest locally convex topology on X with the same dual space. This topology is a norm topology generated by co(U) where $U = \{x : ||x|| \le 1\}$ is the unit ball of X. Let $||\cdot||$ be the associated

Received September 24, 1980. Revision received June 24, 1981.

The first author's research was supported in part by NSF grant MCS-8001852.

Some of this work will form a part of the second author's Ph.D. Thesis under preparation at the University of Missouri-Columbia.

Michigan Math. J. 29 (1982).