A DUALITY THEOREM FOR HARMONIC FUNCTIONS

Steven R. Bell

Let D be a bounded open subset of \mathbb{R}^n with C^{∞} boundary, and let $h^{\infty}(\bar{D})$ denote the space of complex valued harmonic functions on D which are in $C^{\infty}(\bar{D})$. In this paper, we prove that the dual of the Frechet space $h^{\infty}(\bar{D})$ is the space $h^{-\infty}(D)$ of harmonic functions on D which satisfy finite growth conditions at the boundary. More precisely, a harmonic function g is in $h^{-\infty}(D)$ if and only if there are positive constants m and C such that $\sup\{|g(z)|d(z)^m:z\in D\}< C$ where d(z) is the distance of z to bD, the boundary of D. In fact, we prove that $h^{\infty}(\bar{D})$ and $h^{-\infty}(D)$ are mutually dual via an extension of the usual $L^2(D)$ pairing.

This duality in conjunction with some classical results from potential theory allows us to prove an interesting theorem about the Poisson kernel $P(x, \theta)$ of the domain D. It is a classical fact that the operator $\phi \mapsto \int_{bD} P(x, \theta) \phi(\theta) d\sigma_{\theta}$ maps $C^{\infty}(bD)$ isomorphically onto $h^{\infty}(\bar{D})$. In this paper, we prove that the operator

$$h\mapsto \int_D h(x)P(x,\theta)\;dV_x,$$

when defined correctly, is an isomorphism between $h^{-\infty}(D)$ and $\mathfrak{D}'(bD)$. A key step toward proving these results is the establishment of

LEMMA 1. Suppose D is a smooth bounded domain in \mathbb{R}^n and s is a positive integer. There is a positive integer m=m(s) and a constant C=C(s) such that if f and g are harmonic functions in $L^2(D)$, then

$$\left| \int_{D} fg \right| \leq C \left(\sup_{z \in D, |\alpha| \leq m} |\partial^{\alpha} f(z)| \right) \left(\sup_{z \in D} |g(z)| d(z)^{s} \right).$$

Here, the symbol ∂^{α} is defined when $\alpha = (a_1, a_2, ..., a_n)$ is a multi-index as the differential operator

$$\partial^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x_1^{a_1} \partial x_2^{a_2} \cdots \partial x_n^{a_n}} \ .$$

The constants m and C do not depend on f or g.

This lemma leads to the remarkable conclusion that if $f \in h^{\infty}(\bar{D})$ and $g \in h^{-\infty}(D)$, then $\int_{D} fg$ is a well defined quantity, even though |fg| may be far from integrable.

Before we can state and prove our main theorem, we must establish some definitions and recall some facts from potential theory.

Throughout this paper, D will be a smooth bounded domain contained in \mathbb{R}^n . If s is a positive integer, we let $W^s(D)$ denote the usual Sobolev space of complex valued functions on D with norm $\| \cdot \|_s$ induced by the inner product

Received March 16, 1981. Revision received June 5, 1981.

Research supported by NSF grant MCS 80-17205.

Michigan Math. J. 29 (1982).