ON FUCHSIAN GROUPS OF DIVERGENCE TYPE

Ch. Pommerenke

1. INTRODUCTION

Let Γ be a Fuchsian group in the unit disk **D** with identity ι . We assume throughout that 0 is not an elliptic fixed point and denote by ρ the radius of the maximal disk $\{|z| < \rho\}$ that does not contain Γ -equivalent points. We also assume that Γ does not have a compact fundamental domain, so that \mathbf{D}/Γ is an open Riemann surface.

If Γ is of convergence type, that is if $\Sigma_{\gamma \in \Gamma} (1 - |\gamma(0)|) < \infty$, then the Blaschke product

(1.1)
$$g(z) = z \prod_{\gamma \in \Gamma, \gamma \neq \iota} \frac{|\gamma(0)|}{\gamma(0)} \gamma(z) \qquad (z \in \mathbf{D})$$

is called the *Green's function* of Γ with respect to 0; the positive harmonic function $-\log|g(z)|$ corresponds to the Green's function on \mathbf{D}/Γ .

Let now Γ be of divergence type; in the terminology of classification theory this means that $\mathbf{D}/\Gamma \in O_G$. We consider analogues of Green's functions; their harmonic counterparts on \mathbf{D}/Γ are, for instance, the Evans function [15, p. 350] and Tsuji's modified Green's function [16, p. 455].

Let $\mathfrak{G}(\Gamma)$ denote the class of all functions $f(z)=z+a_2z^2+\ldots$ analytic in **D** with

(1.2)
$$|f(\gamma(z))| = |f(z)|$$
 for $\gamma \in \Gamma$, $z \in \mathbf{D}$

such that |f(z)| is bounded away from 0 in $\mathbf{D} \setminus \bigcup_{\gamma \in \Gamma} \gamma(D_0)$ for a suitable disk D_0 around 0.

We shall show that the bounds in the last condition are actually only dependent on ρ (see Theorem 3). Every function $f \in \mathfrak{G}(\Gamma)$ is normal, and there is a natural fundamental domain associated with it (see Theorem 2). Perhaps the main result (Theorem 4) is that the functions $f \in \mathfrak{G}(\Gamma)$ that remain bounded at the parabolic vertices satisfy the best possible estimate

(1.3)
$$\log^+ |f(z)| = o\left(\frac{1}{1-|z|}\right) \quad \text{as} \quad |z| \to 1-0.$$

Let $L_0(\Gamma)$ denote the set of all $\zeta \in \partial \mathbf{D}$ for which there exist $\gamma_k \in \Gamma$ with

Received October 1, 1979. Revision received October 16, 1980.

Michigan Math. J. 28 (1981).