JACOBIAN IDEALS AND A THEOREM OF BRIANÇON-SKODA

Joseph Lipman and Avinash Sathaye

1. PRINCIPAL RESULTS

We prove the following generalization of a theorem of Briançon-Skoda (for background cf. [5], [13]):

THEOREM 1. Let R be a commutative noetherian normal integral domain, and let I_0 be an ideal in R such that the associated graded ring $\bigoplus (I_0^n/I_0^{n+1})$

is regular (i.e., all its localizations at prime ideals are regular local rings; for example I_0 could be any ideal such that both R/I_0 and the ring of fractions R_{1+I_0} are regular). Let I be an ideal of the form $I = I_0 + (y_1, y_2, ..., y_{d+1})R$ ($d \ge 0$) and let $\lambda \ge 1$ be any positive integer. Then $I^{d+\lambda} \subset I^{\lambda}$ where " denotes "integral closure" of an ideal.

Remarks. (1) Some other versions of Theorem 1 are given at the end of this section.

(2) For d = 0, Theorem 1 says that all powers of I are integrally closed. For more on this situation see Section 4.

Theorem 1 is a corollary of:

THEOREM 1'. Let R^* be a commutative noetherian normal integral domain and let $0 \neq t \in R^*$ be such that R^*/tR^* is regular. Let $y_1, ..., y_{d+1} \in R^*$, let $S = R^* [y_1/t, ..., y_{d+1}/t]$ and let \bar{S} be the integral closure of S (in its field of fractions). Then $t^d \bar{S} \subset S$.

Indeed, take t to be an indeterminate over R, and set

$$R^* = R[t, I_0 t^{-1}] = \bigoplus_{n \in \mathbf{Z}} I_0^n t^{-n} \qquad (I_0^n = R \text{ if } n \le 0).$$

Then R^* is normal (because each I_0^n is a valuation ideal) and $R^*/tR^* = \bigoplus_{n \geq 0} I_0^n/I_0^{n+1}$ is regular. Now with I as in Theorem 1, the ring S of Theorem 1' is the graded ring $S = \bigoplus_{n \in \mathbb{Z}} I^n t^{-n}$ ($I^n = R$ if $n \leq 0$), and so its integral closure is $\overline{S} = \bigoplus_{n \in \mathbb{Z}} \overline{I^n} t^{-n}$. (In fact this is one way to define $\overline{I^n}$.). So from Theorem 1' we conclude that for all n, $\overline{I^n} t^{-n+d} \subseteq I^{n-d} t^{-n+d}$, and setting $n = d + \lambda$ we get Theorem 1.

Received February 28, 1980. Revision received June 16, 1980.

The first author's research was partially supported by NSF Grant MCS-7903444 at Purdue University. The second author's research was partially supported by NSF Grant MCS-7801947 at the University of Kentucky.

Michigan Math. J. 28 (1981).