EIGENVALUES EMBEDDED IN THE CONTINUUM FOR NEGATIVELY CURVED MANIFOLDS

Harold Donnelly

1. INTRODUCTION

Suppose that M is a complete simply connected negatively curved surface and Δ is the Laplacian of M. If M is the Poincaré upper half plane with constant curvature -1, then the spectrum of $-\Delta$ is purely continuous and consists of the half line $[1/4,\infty)$.

Denote K to be the Gauss curvature of M. McKean [10] showed that if $K \leq -1$ then the spectrum of $-\Delta$ is bounded below by 1/4. By a more detailed argument, Pinsky [14] proved that if $K \leq -1$ then 1/4 does not appear in the point spectrum of $-\Delta$.

Since M may have continuous spectrum starting at 1/4, new proofs are required to prevent M from having eigenvalues greater than 1/4. Let $ds^2 = dr^2 + g^2(r,\theta) d\theta^2$ be the metric in terms of geodesic polar coordinates (r,θ) about some $p \in M$. If g = g(r) is independent of θ , then Pinsky [14] gave decay conditions on K(r) + 1, as $r \to \infty$, which insure that M has no eigenvalues greater than 1/4. Unfortunately, his method does not generalize in a straightforward way to metrics which are not rotation invariant, at least for r suitably large.

In this paper we give decay conditions on $K(r,\theta)+1$, K_{θ} , $K_{\theta\theta}$, as $r\to\infty$, which imply that M has no eigenvalues greater than 1/4. We then easily generalize our results to dimensions $n\geq 2$. By adding the hypothesis $K\leq -1$, one obtains a criterion for a negatively curved manifold to have purely continuous spectrum consisting of the half line $[(n-1)^2/4,\infty)$.

Our method is a modification of Kato's solution [9] given the analogous problem for the Schrödinger operator on \mathbb{R}^n . The idea is to regard $L^2(\mathbb{R}^n) = L^2(\mathbb{R}) \times L^2(S^{n-1})$ and to systematically exploit differential inequalities for $L^2(S^{n-1})$ valued functions on \mathbb{R} .

The author thanks Professor Pinsky for sending us a copy of his paper [14] and for informing us [12] of the open problem which arose in that work. This provided the starting point for the present paper.

2. SURFACES HAVING ASYMPTOTICALLY CONSTANT CURVATURE

Let M be a complete simply connected negatively curved surface. Then for each $p \in M$ the exponential map exp: $T_pM \to M$ is a diffeomorphism [3, p. 184].

Received August 27, 1979.

Michigan Math J. 28 (1981).