SOME REPRESENTING MEASURES FOR THE BALL ALGEBRA

Walter Rudin

In this paper, M_0 denotes the class of those (Borel) probability measures ρ on the sphere S (the boundary of the open unit ball B in \mathbb{C}^n) that satisfy

$$\int_{S} f d\rho = f(0)$$

for every f in the ball algebra A(B). [Recall that $f \in A(B)$ if and only if f is a continuous complex function on \overline{B} and f is holomorphic in B. The members of M_0 "represent" the homomorphism $f \to f(0)$ of A(B) onto C.]

When n = 1, M_0 has exactly one member, namely normalized Lebesgue measure on the unit circle T. In general, M_0 is convex and weak*-compact, but it turns out to be a very large set when n > 1.

The "obvious" members of M_0 are the *circular* probability measures μ on S. By definition, these satisfy

(2)
$$\int_{S} v(e^{i\theta}\zeta) d\mu(\zeta) = \int_{S} v d\mu$$

for every $v \in C(S)$ and for every real θ . Indeed, if (2) holds and $f \in A(B)$, then $\lambda \to f(\lambda \zeta)$ is in the disc algebra A(U) ($U = B^1$), so that

(3)
$$\int_{S} f d\mu = \int_{S} d\mu \left(\zeta \right) \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{i\theta} \zeta) d\theta = f(0),$$

by Fubini's theorem.

To see some others, take n=2, for simplicity. Let τ be any probability measure on $\bar{U}\subset \mathbf{C}$ that satisfies

$$\int_{\bar{U}} g d\tau = g(0)$$

for every $g \in A(U)$. For example, τ might be concentrated on a simple closed curve Γ in U that surrounds the origin, in such a way that τ solves the Dirichlet problem at 0 relative to the domain bounded by Γ . The measure ρ that satisfies

Received November 1, 1978.

This research was partially supported by NSF Grant MCS 78-06860, and by the William F. Vilas Trust Estate.

Michigan Math. J. 27 (1980). .