A GEOMETRIC CONDITION WHICH IMPLIES BMOA

David A. Stegenga

1. INTRODUCTION

The space BMOA is the collection of analytic functions on the unit disc D which are in the Hardy space H^1 and whose boundary values belong to the space BMO of John and Nirenberg [6].

Recently, Hayman and Pommerenke [5] discovered a geometric characterization of all regions Ω with the property that an analytic function with values in Ω will belong to BMOA. Their characterization uses logarithmic capacities.

At about the same time I independently discovered the sufficiency result along with several applications and generalizations to known results. These applications are given below along with the best norm result which involves a property of logarithmic capacity which may be of independent interest.

2. STATEMENT OF THE RESULTS

The geometric characterization given in [5] is that there exist an r > 0 and $\delta > 0$ such that $\operatorname{Cap}(D(w,r) \setminus \Omega) \geq \delta$ for all w in Ω . Here D(w,r) is the closed disc of radius r centered at w and "Cap" denotes the logarithmic capacity of a set.

For a region Ω (Ω is an open, connected subset of C) let

$$\phi(r) = \inf_{w \in \Omega} \frac{\operatorname{Cap}(D(w,r) \setminus \Omega)}{\operatorname{Cap}(D(w,r))}$$

so that $0 \le \phi \le 1$. We could replace the denominator with r since the capacity of a disc is its radius. If in the definition of ϕ we replace Cap with a measure, then the condition $\phi(r_0) = \delta > 0$ would not imply a stronger result for large r, i.e., the ratio could remain constant. Surprisingly, the situation with capacities is quite different.

THEOREM 1. For a region Ω , $\lim_{r\to\infty} \phi(r) = 1$ provided that $\phi(r) \neq 0$ for some r > 0. In addition, there exists an r > 0 with $2^{-5} \leq \phi(r) \leq 2^{-1/5}$.

The next is a refinement of that given in [5].

Received October 4, 1978. Revision received June 13, 1979.

The author is partially supported by a grant from the National Science Foundation.

Michigan Math. J. 27 (1980)